
API Development Manual:
AMTPalmMobile SDK for Android

API Version: 1.0

Doc Version: 1.0

September 2022

Thank you for choosing our product. Please read the instructions

carefully before operation. Follow these instructions to ensure that the

product is functioning properly. The images shown in this manual are for

illustrative purposes only.

For further details, please visit our Company’s website

www.armatura.us.

http://www.armatura.us/

Copyright © 2022 ARMATURA LLC. All rights reserved.

Without the prior written consent of ARMATURA LLC. no portion of this manual can be copied or

forwarded in any way or form. All parts of this manual belong to ARMATURA and its subsidiaries

(hereinafter the "Company" or "ARMATURA").

Trademark

 is a registered trademark of ARMATURA LLC. Other trademarks involved in this

manual are owned by their respective owners.

Disclaimer

This manual contains information on the operation and maintenance of the ARMATURA product.

The copyright in all the documents, drawings, etc. in relation to the ARMATURA supplied product

vests in and is the property of ARMATURA. The contents hereof should not be used or shared by

the receiver with any third party without express written permission of ARMATURA.

The contents of this manual must be read as a whole before starting the operation and maintenance

of the supplied product. If any of the content(s) of the manual seems unclear or incomplete, please

contact ARMATURA before starting the operation and maintenance of the said product.

It is an essential pre-requisite for the satisfactory operation and maintenance that the operating and

maintenance personnel are fully familiar with the design and that the said personnel have received

thorough training in operating and maintaining the machine/unit/product. It is further essential for the

safe operation of the machine/unit/product that personnel have read, understood, and followed the

safety instructions contained in the manual.

In case of any conflict between terms and conditions of this manual and the contract specifications,

drawings, instruction sheets or any other contract-related documents, the contract

conditions/documents shall prevail. The contract specific conditions/documents shall apply in priority.

ARMATURA offers no warranty, guarantee, or representation regarding the completeness of any

information contained in this manual or any of the amendments made thereto. ARMATURA does

not extend the warranty of any kind, including, without limitation, any warranty of design,

merchantability, or fitness for a particular purpose.

ARMATURA does not assume responsibility for any errors or omissions in the information or

documents which are referenced by or linked to this manual. The entire risk as to the results and

performance obtained from using the information is assumed by the user.

ARMATURA in no event shall be liable to the user or any third party for any incidental,

consequential, indirect, special, or exemplary damages, including, without limitation, loss of

business, loss of profits, business interruption, loss of business information or any pecuniary loss,

arising out of, in connection with, or relating to the use of the information contained in or referenced

by this manual, even if ARMATURA has been advised of the possibility of such damages.

This manual and the information contained therein may include technical, other inaccuracies, or

typographical errors. ARMATURA periodically changes the information herein which will be

incorporated into new additions/amendments to the manual. ARMATURA reserves the right to add,

delete, amend, or modify the information contained in the manual from time to time in the form of

circulars, letters, notes, etc. for better operation and safety of the machine/unit/product. The said

additions or amendments are meant for improvement /better operations of the machine/unit/product

and such amendments shall not give any right to claim any compensation or damages under any

circumstances.

ARMATURA shall in no way be responsible (i) in case the machine/unit/product malfunctions due to

any non-compliance of the instructions contained in this manual (ii) in case of operation of the

machine/unit/product beyond the rate limits (iii) in case of operation of the machine and product in

conditions different from the prescribed conditions of the manual.

The product will be updated from time to time without prior notice. The latest operation procedures

and relevant documents are available on http://www.armatura.com.

If there is any issue related to the product, please contact us.

ARMATURA Headquarters

Address 190 Bluegrass Valley Pkwy,

 Alpharetta, GA 30005, USA.

For business-related queries, please write to us at: info@armatura.us.

To know more about our global branches, visit www.armatura.us.

http://www.zkteco.com/
http://www.zkteco.com/

About the Company

ARMATURA is a leading global developer and supplier of biometric solutions which incorporate the

latest advancements in biometric hardware design, algorithm research & software development.

ARMATURA holds numerous patents in the field of biometric recognition technologies. Its products

are primarily used in business applications which require highly secure, accurate and fast user

identification.

ARMATURA biometric hardware and software are incorporated into the product designs of some of

the world’s leading suppliers of workforce management (WFM) terminals, Point-of-Sale (PoS)

terminals, intercoms, electronic safes, metal key lockers, dangerous machinery, and many other

products which heavily rely on correctly verifying & authenticating user’s identity.

About the Manual

This manual introduces the operations of AMTPalmMobile SDK for Android.

All figures displayed are for illustration purposes only. Figures in this manual may not be exactly

consistent with the actual products.

Document Conventions

Conventions used in this manual are listed below:

GUI Conventions

For Software

Convention Description

Bold font Used to identify software interface names e.g. OK, Confirm, Cancel.

>
Multi-level menus are separated by these brackets. For example, File >

Create > Folder.

For Device

Convention Description

< > Button or key names for devices. For example, press <OK>.

[]
Window names, menu items, data table, and field names are inside square

brackets. For example, pop up the [New User] window.

/
Multi-level menus are separated by forwarding slashes. For example,

[File/Create/Folder].

Symbols

Convention Description

This represents a note that needs to pay more attention to.

The general information which helps in performing the operations faster.

 The information which is significant.

 Care taken to avoid danger or mistakes.

The statement or event that warns of something or that serves as a

cautionary example.

Table of Contents

1 INTRODUCTION .. 6

1.1 OVERVIEW ... 6

1.2 ALGORITHM FEATURES .. 6

1.3 ADVANTAGE OF THE ALGORITHM ... 7

2 TECHNICAL SPECIFICATIONS ... 8

2.1 ARCHITECTURE .. 9

2.1.1 SDK FILE ... 9

2.1.2 DEVELOPMENT SETUP ... 9

2.2 PROGRAMMING GUIDE ... 9

2.2.1 REGISTRATION PROCESS .. 9

2.2.2 VERIFICATION/IDENTIFICATION PROCESS ... 11

3 SDK INTERFACE DESCRIPTION .. 14

3.1 TEMPLATE FORMAT ... 14

3.2 INTERFACE DESCRIPTION .. 14

3.2.1 AMTPALMMOBILE.ARR ... 14

APPENDIX ... 28

APPENDIX 1: ERROR CODE ... 28

APPENDIX 2: GLOSSARY... 28

APPENDIX 3: IMAGE BACKUP DURING REGISTRATION PROCESS .. 29

1 Introduction

This document will provide basic SDK development guide and technical background to help

application developers/integrators better understand AMTPalmMobile SDK in their development

practice.

The following sections will explain all the required information on how to perform and integrate

AMTPalmMobile SDK.

1.1 Overview

AMTPalmMobile biometric recognition algorithm is AI computer vision-based palm recognition

algorithm on true-color RGB images. It not only recognizes and supports palm liveness detect, but

also has strong adaptability to various environments of varying lighting condition. It can perform the

palm recognition with accuracy even with partially captured or blurred palm images, and less

impacted by ambient light. It is fully open to software developers and system integrators, and the

SDK can be customized to meet the customer requirements. We keep a consistent model for palm

detection, feature extraction, and matching to ensure the compatibility throughout all different SDK

versions and cross various platforms.

1.2 Algorithm Features

▪ 1:N High-Speed Matching Algorithm

While maintaining the high stability in performance, the algorithm uses a multi-level

comparison mode and optimized classifier parameters, to achieve high-speed matching for

large-volume users.

▪ Palm Quality Assessment

Evaluate the image quality of the target palm.

▪ Highly Secure Anti-Spoofing Protection

Liveness detection under visible light to ensure the palm is a real and right one, protect the

target application from forgery attacks.

▪ High-Tolerance to Palm Postures

The algorithm is not only adaptable to wide Pitch (±30°), Yaw (±45°), or Roll (±30°) angels of

palm postures, but also effectively identifies various palm shapes from tensed to bended.

The high posture tolerance allows user to perform palm recognition in a natural and

comfortable way, which greatly improves the user experience.

1.3 Advantage of the Algorithm

• The algorithm works well with true color RGB images captured by most common digital

cameras for mobile devices or web browsers.

• Simple, intuitive, and developer-friendly programming interfaces.

• Well-documented development guide on code tutorial.

• Rich programming interfaces provide value-added features on applications.

2 Technical Specifications

Development Language

This SDK provides a jar package to support Java development.

Platform Requirements

This SDK supports Android 5.0 or higher.

Technical Parameters

Parameter Description

Template size 544B

Posture adaptability Yaw ≤45, Pitch ≤30, Roll ≤90, Bend≤20

Palm detection < 15 ms

Palm feature extraction < 45 ms

Palm verification/identification (1:10,000) < 10 ms

Number of palm templates supported 5000

Accuracy TAR=98.2% when FAR=0.05%

The above performance is based on the tests conducted with the following specifications:

Image resolution: 640x640, CPU: Intel(R) Core(TM) i5-9400 CPU @ 2.90Ghz, RAM: 16GB.

2.1 Architecture

2.1.1 SDK File

▪ Copy the following file to your Android terminal.

File Name Description

AMTPalmMobile.arr Biometric Interface Library

2.1.2 Development Setup

SDK Dynamic-link library files can be copy-paste and installed directly

Please make sure your operating system and computer configuration meet the requirements of

software operation before installing the AMTPalmMobile SDK.

Copy AMTPalmMobile.arr and related files in AMTPalmMobile SDK to the path specified by the

user.

2.2 Programming Guide

The following sections will provide introduction and walk-through of the key operating processes

and the Biometric registration/comparison processes of the algorithms in AMTPalmMobile SDK

for the purpose of further understanding and development.

2.2.1 Registration Process

The extracted palm information can be directly used as the registration template during palm

registration. Refer to Section 3 SDK Interface Specification for more information.

Process Description:

▪ Call the enrollment class to collect images

▪ Once the image is successful collected, call Detect to detect the palm

▪ After the palm image is successfully detected, call GetPalmqlt for quality inspection.

▪ After passing quality inspection, call GetPalmvL for liveness detection.

▪ If pass liveness detection (over the liveness threshold value), call GetTemplate to extract

the palm template

▪ After the template is successfully extracted, call DBIdentify to perform 1:N matching to

check whether the current template has been registered or not. If it has been registered

before, it will prompt the user that the palm has been registered and stops the

registration process.

▪ If the 1:N matching returns with negative value, means no template matched from the

database, call DBset to add the palm template to the base library (cache) and save the

palm template to the database

▪ Complete the registration process

2.2.2 Verification/Identification Process

For palm identification (1:N matching), all registered templates need to be added to base library

(cache) first. It is recommended to call DBset and add all palm template to the base library after

the algorithm is successfully initialized. This process is also recommended for palm verification

(1:1 matching).

Process Description:

▪ Call the enrollment class to collect images

▪ Once the image is successful collected, call Detect to detect the palm

▪ After the palm is detected, call GetPalmqlt for quality check.

▪ After passing quality check, call GetPalmvl for liveness detection.

▪ If liveness detection returns with positive value, call GetTemplate to extract the template

▪ Call DBidentifity to perform 1:N matching to complete the process.

3 SDK Interface Description

3.1 Template Format

Template Type Data Length Description

Palm template 544 Bytes
Work as registration template or verification/
identification template

3.2 Interface Description

This is a dynamic library for biometric interface. It is mainly used for palm detection, template

extraction, registration, comparison, and palm specification.

3.2.1 AMTPalmMobile.arr

3.2.1.1 Function List

Interface Description

Version Get AMPalmMobile SDK version

init Initialize algorithm resources

Final Clear algorithm cache

LoadModels Load models from disk into memory

Detect Palm Detection

DetectRotation Palm rotation Detection

GetObject Get the palm information struct

GetFeature Extracts palm features

GetTemplate Extracts palm template

Verify Perform 1:1 matching

GetPalmvl Palm liveness check under visible light

DBopen Connect database

DBclose Close database

DBset Store the original template data in the database

DBdelete Delete specific template from the template database

DBget Get specific template from the template database

DBcountbyid
Calculate the total number of original palm

templates for the specific ID(s)

DBcountid
Calculate the total number of ID assigned in

database

DBidentifity Identify in database

DBreset Clears all data in database

DBverify
Performs a 1:1 matching between specified

templates

GetPalmqlt Get palm quality

3.2.1.2 Description of the structure

// Struct for target image information

public class TObject {

 public int class_id; //a number indicating what is it (Identify target image)

 public int x, y, w, h; //the bound box of the object

 public float[] point; //the landmarks of an object

 public float yaw, roll, pitch; //the 3D posture of the object

 public float score; //the accuracy score of the object

}

// Palm key point coordinates

/**

/* Landmark[9]

 *

 * Note: The feature points will be marked clockwise in consecutive order for both left and right

hands, ignore the position of thumb.

 ***/

3.2.1.3 Version

Function Syntax

int Version()

Description

Get the SDK version number.

Parameters

None

Returns

SDK version number

3.2.1.4 init

Function Syntax

int init(String db_name)

Description

Initializing algorithmic resources.

Parameters

Parameter Description

db_name[in] Name and path of database file

Returns

Success when return 0, Failure when return -1

Remarks

1. The above interface should be successfully called before calling any other interface.

2. The algorithm resource will only need to be initialized once during the entire program

cycle.

3.2.1.5 Final

Function Syntax

int Final()

Description

Free up algorithm resources.

Parameters

None

Returns

Success when return value equals zero, error when return value smaller than zero

Remarks

 1. The above interface should be called to release algorithm resource when terminating

the program.

3.2.1.6 LoadModels

Function Syntax

int LoadModels()

Description

 Loading the model from disk into memory, a time-consuming operation.

Parameters

None

Returns

Success when return value equals zero, error when return value smaller than zero. See

error code for more detail (Appendix 1: Error Code)

Remarks
1. Call the above code after initializing with init. Both of them should be successfully called

before calling any other interface.

3.2.1.7 Detect

Function Syntax

int Detect(byte[] image, int width, int height, String format)

Description

 Detect target from images, The return value will be the number of detected targets. (Target

here means palm).

Parameters

Parameter Description

image[in] Image binary data in the specified format

width[in] Image width

height[in] Image height

image_format[in] image format, support: "rgb888", "bgr888", "rgba8888",

"bgra8888", "bgr565", "nv21", "gray"

Returns

Success when the returned value is larger than or equal to zero (the number of target

detected), error if less than zero. See error code for more detail (Appendix 1: Error Code)

3.2.1.8 DetectRotation

Function Syntax

int DetectRotation(byte[] image, int width, int height, String format, int flipx, int flipy, int angle)

Description

Detect target from images, The return value will be the number of targets detected.

Support image rotation to fix the intended orientation of input image. (target here means palm)

Parameters

Parameter Description

image[in] Image binary data in the specified format

width[in] Image width

height[in] Image height

image_format[in]
image format, support: "rgb888", "bgr888", "rgba8888",

"bgra8888", "bgr565", "nv21", "gray"

angle[in] rotation angle, supports: 0, 90, 180, 270

flipx[in] whether the x-axis is flipped, 0 for no flipping, otherwise flipped

flipy[in] whether the y-axis is flipped, 0 for no flipping, otherwise flipped

Returns

Success when the returned value is larger than or equal to zero (the number of target

detected), error if smaller than zero. See error code for more detail (Appendix 1: Error Code).

3.2.1.9 GetObject

Function Syntax

TObject GetObject(int index)

Description

 Get the target information structure

Parameters

Parameter Description

index[in]
Target index, less than the number of detected targets (0 ~

number of detected targets-1)

Returns

Success when return the target structure, failure when return null.

3.2.1.10 GetFeature

Function Syntax

int GetFeature(int index,String name,float[] values,int count)

Description

 Extracts the features of the target (Target here means palm).

Parameters

Parameter Description

index[in]]
Target index, less than the number of detected targets (0 ~

number of detected targets-1)

name[in] Type of feature

values[out] Value of feature

count[out] Length of feature

Returns

Success when return value equals or larger than zero, error when return value smaller than

zero. See error code for more detail (Appendix 1: Error Code)

3.2.1.11 GetTemplate

Function Syntax

int GetTemplate(int index,byte[] template)

Description

 Extract feature template

Parameters

Parameter Description

index[in]
Target index, less than the number of detected targets (0 ~

number of detected targets-1)

template[out] Return feature template pointer

Returns

Success when return value equals or larger than zero (the length of template), error when

return value smaller than zero, see error code for more detail (Appendix 1: Error Code)

3.2.1.12 Verify

Function Syntax

int Verify(byte[] template1,byte[] template2,float[] score)

Description

 Compares two templates and returns a similarity score between 0 and 99.3799.

Parameters

Parameter Description

template1[in] Input template1

Template2[in] Input template2

score[out] Return the similarity scores for pairs of templates

Returns

Success when return value equals or larger than zero, error when return value smaller than

zero, see error code for more detail (Appendix 1: Error Code)

3.2.1.13 GetPalmvl

Function Syntax

int GetPalmvl(int index,float[] values)

Description

Palm liveness check under visible light.

Parameters

Parameter Description

index[in] Palm Index

values[out] The score of liveness detection

Returns

Success when return value equals or larger than zero, error when return value smaller than

zero, see error code for more detail (Appendix 1: Error Code)

3.2.1.14 DBopen

Function Syntax

int BioFeatrueDBopen(String dbname)

Description

Access database.

Parameters

Parameter Description

dbname[in] Name of database

Returns

Success when return value equals or larger than zero, error when return value smaller than

zero, see error code for more detail (Appendix 1: Error Code)

3.2.1.15 DBclose

Function Syntax

int DBclose ()

Description

 Close the database.

Parameters

 None

Returns

Success when return value equals or larger than zero, error when return value smaller than

zero, see error code for more detail (Appendix 1: Error Code)

3.2.1.16 DBset

Function Syntax

int DBset(String id, byte[][] templates, int count, int type)

Description

 Store the original template data in the database. Note: When return value is zero the old

database will be switched to new database.

Parameters

Parameter Description

id[in] Template id

 templates[in] Multi-template samples

count[in] Number of templates

type[in] Identify modal (palm)

Returns

Success when return value equals or larger than zero, error when return value smaller than

zero, see error code for more detail (Appendix 1: Error Code)

3.2.1.17 DBdelete

Function Syntax

int DBdelete(String id)

Description

 Delete specific template from database based on template ID.

Parameters

Parameter Description

id[in] Target id

Returns

Success when return value equals or larger than zero, error when return value smaller than

zero, see error code for more detail (Appendix 1: Error Code)

3.2.1.18 DBGet

Function Syntax

int DBget(String id,byte[] template,int size,int type)

Description

Read the specified palm template from the template database and place in template in

proper order. This function will return the number of valid templates

Parameters

Parameter Description

id[in] Input id

template[out] Output Templates

size[in] Size of each template

type[in] Identify modal (palm)

Returns

Success when return value equals or larger than zero, error when return value smaller than

zero, see error code for more detail (Appendix 1: Error Code)

3.2.1.19 DBcountbyid

Function Syntax

int DBcountbyid(String id,int type)

Description

 Calculates the number of original palm templates for given ID.

Parameters

Parameter Description

id[in] Input id

type[in] Identify modal (palm)

Returns

Success when return value equals or larger than zero (the length of template), error when

return value smaller than zero, see error code for more detail (Appendix 1: Error Code)

3.2.1.20 DBcountid

Function Syntax

int DBcountid()

Description

Calculate the total number of ID stored in database.

Parameters

None

Returns

Success when return value equals or larger than zero (the total number of ID stored in

database), error when return value smaller than zero, see error code for more detail (Appendix

1: Error Code)

3.2.1.21 DBidentifity

Function Syntax

int DBidentifity(byte[] template,byte[] id,float[] score,float minscore ,float maxscore,int type)

Description

Similarity score identification

Parameters

Parameter Description

template[in] Template to be identified

id[out] Output id

score[out] Output similarity scores

 minscore[in] minimum score

maxscore[in] maximum score

type[in] Identify modal (palm)

Returns

Success when return value equals or larger than zero, error when return value smaller than

zero, see error code for more detail (Appendix 1: Error Code)

3.2.1.22 DBReset

Function Syntax

int DBreset()

Description

Clear all data in database.

Parameters

None

Returns

Success when return value equals or larger than zero, error when return value smaller than

zero, see error code for more detail (Appendix 1: Error Code)

3.2.1.23 DBVerify

Function Syntax

int DBverify(byte[] template,String id,int type,float[] score)

Description

Perform 1 on 1 comparison between specified templates, return similarity scores between

0~99.3799.

Parameters

Parameter Description

template[in] Template to be compared

id[in] ID to be compared

score[out] Similarity score

type[in] Identify modal (palm)

Returns

Success when return value equals or larger than zero, error when return value smaller than

zero, see error code for more detail (Appendix 1: Error Code)

3.2.1.24 GetPalmqlt

Function Syntax

int GetPalmqlt(int index,float[] values)

Description

Get palm quality.

Parameters

Parameter Description

index[in] Palm Index

values[out] Quality score of palm image

Returns

Success when return value equals or larger than zero, error when return value smaller than

zero, see error code for more detail (Appendix 1: Error Code)

Appendix

Appendix 1: Error Code

Error Code Description

0 Call succeeded

-1000 Certificate error

-1001 Error reading configuration file

-1002 The feature name is wrong, or the feature is not supported

-1003 Model name error or such model is not supported

-1004
Error identifying ROI (region of interest) name, or the ROI is not

supported

-1005 The normalization name is wrong, or the normalization is not

supported

-1006 Null pointer error

-1007 Target not detected

-1008 Target index exceeded error

-1009 Input greater than space of temp cache location

-1010 Input parameter error

-1011 Configuration parameter keyword error

-1012 Configuration parameter value error

-1013 Feature type error

-1014 Model type error

-1015 Normalization type error

-10001 Invalid template

 -10002 Failed to connect to database or database creation failed

-10003 Failed to access database

-10004 Database access error

-10005 Template size error

-10006 ID not found in database

Appendix 2: Glossary

The following definitions will help our users understand the common functions of biometric

identification applications when developing the biometric identification applications.

Verification/Identification template

Verification/Identification templates are used to either 1:1 verification or 1:N identification. The

palm templates are obtained by calling the GetTemplate interface.

Registration template

Registration templates are used to registration that is added to the basic library (cache). A

registration template is the palm templates returned by calling the GetTemplate interface.

Palm Registration

The palm collecting device captures a palm image and then extracts palm template, which is

transferred to the backend and stored in database as a registered palm for later palm

comparison.

Palm Verification (1:1)

1:1 verification is a process of verifying whether a user has a valid identity based on the user ID

and palm template or determining whether the registered template and the verification

templates extracted matches the same captured palm image.

That is, 1:1 biometric verification process authenticates a person’s identity by comparing the

captured biometric template with a biometric template of that person pre-stored in the database.

Palm Identification (1:N)

1:N identification, is a process of determining whether a user exists in the system based on the

palm of the user, without the user ID. Specifically, the application looks up the database of

registered palm templates based on the input palm template and returns the name of the user

by meeting the threshold of palm similarity degree, and other related information.

So thus, A one-to-many (1:N) biometric identification process instantly compares the person’s

captured biometric template against ALL stored biometric templates in the system.

Appendix 3: Image backup during registration process

It is recommended to store the image used during registration process. The features may need

to be re-extracted when the algorithm model is upgraded

190 Bluegrass Valley Pkwy,

Alpharetta, GA 30005, USA

E-mail: info@armatura.us

www.armatura.us

Copyright © 2022 ARMATURA LLC. All Rights Reserved.

