

API Development Manual

Armatura FacePro Windows SDK

Date: Jan 2023

SDK Version: 5.8

Document Version: 1.1

English Version

Thank you for choosing our product. Please read the instructions

carefully before operation. Follow these instructions to ensure that the

product is functioning properly. The images shown in this manual are for

illustrative purposes only.

For further details, please visit our Company’s website

www.armatura.us

http://www.armatura.us/

FacePro Windows SDK V5.8 SDK Development Guide

P a g e | 1 Copyright©2023 Armatura LLC. All rights reserved.

Copyright © 2023 Armatura LLC. All rights reserved.

Without the prior written consent of Armatura LLC no portion of this manual can be copied or

forwarded in any way or form. All parts of this manual belong to Armatura and its subsidiaries

(hereinafter the "Company" or "ARMATURA").

Trademark

 is a registered trademark of ARMATURA LLC. Other trademarks involved in this

manual are owned by their respective owners.

Disclaimer

The ARMATURA product manual serves as a comprehensive guide for operating and maintaining

the ARMATURA product. The manual and all accompanying documents, drawings, tables, etc. are

protected by copyright and are the property of ARMATURA. It is strictly prohibited to use or share

the contents of this manual with any third party without obtaining express written permission from

ARMATURA.

To ensure optimal performance and safety, it is crucial to read and fully understand the entire

manual before beginning operation and maintenance of the product. If any aspect of the manual

seems unclear or incomplete, please contact ARMATURA for clarification.

Proper training and familiarity with the product's design are essential prerequisites for successful

operation and maintenance. Additionally, it is crucial to read, understand, and strictly follow the

safety instructions outlined in the manual.

In the event of any discrepancies between the terms and conditions outlined in this manual and

those specified in the contract or other contract-related documents, the contract conditions shall

take precedence.

ARMATURA does not provide any warranties, guarantees, or representations regarding the

completeness or accuracy of the information contained in this manual or any subsequent

amendments. ARMATURA also does not assume responsibility for any errors or omissions and the

user assumes all risks associated with the use of the information provided.

ARMATURA shall not be liable for any incidental, consequential, indirect, special, or exemplary

damages arising from or in connection with the use of the information contained in this manual.

This manual may contain technical inaccuracies or typographical errors and is subject to periodic

updates and revisions. ARMATURA reserves the right to add, delete, amend, or modify the

FacePro Windows SDK V5.8 SDK Development Guide

P a g e | 2 Copyright©2023 Armatura LLC. All rights reserved.

information contained in the manual at any time and such amendments shall not give any right to

claim any compensation or damages under any circumstances.

ARMATURA shall not be held responsible for any malfunctions or damage resulting from non-

compliance with the instructions outlined in the manual or operation beyond prescribed limits or

conditions.

The product may be updated periodically without prior notice and the latest operation procedures

and relevant documents can be found at https://www.armatura.us.

If you have any issues related to the product, please do not hesitate to contact us.

Armatura Office

Address 190 Bluegrass Valley Pkwy,

 Alpharetta, Georgia, 30005, USA

For business-related queries, please write to us at info@armatura.us.

To know more about our global branches, visit www.armatura.us.

mailto:info@armatura.us
http://www.zkteco.com/

FacePro Windows SDK V5.8 SDK Development Guide

P a g e | 3 Copyright©2023 Armatura LLC. All rights reserved.

About the Company

ARMATURA is a cutting-edge biometric solution provider that stays at the forefront of technology by

continuously researching and developing new hardware designs, algorithms, and software. As a

leader in the industry, ARMATURA holds a vast portfolio of patents in biometric recognition

technology. Our products are designed for businesses that demand the highest level of security,

accuracy, and speed in user identification.

Our biometric hardware and software are integrated into some of the most reliable and well-known

brands in workforce management (WFM) terminals, Point-of-Sale (PoS) terminals, intercoms,

electronic safes, metal key lockers, dangerous machinery, and many other products that require

secure and accurate user authentication. Trust ARMATURA to provide you with the most advanced

and reliable biometric solutions for your business needs.

About the Manual

This manual is intended to provide a comprehensive guide to the use of Armatura FacePro 5.8 SDK

for Windows. It covers all the necessary information to help users understand and operate the

software effectively.

Please note that the figures and images provided in this manual are for illustrative purposes only

and may not reflect the exact appearance of the actual products. Additionally, the software and its

features are subject to change and may not be exactly as depicted in the manual. The manual is

intended to be used as a reference guide and should be read in conjunction with the SDK

documentation provided by ARMATURA.

FacePro Windows SDK V5.8 SDK Development Guide

P a g e | 4 Copyright©2023 Armatura LLC. All rights reserved.

Document Conventions

Conventions used in this manual are listed below:

GUI Conventions

For Software

Convention Description

Bold font Used to identify software interface names e.g. OK, Confirm, Cancel.

> Multi-level menus are separated by these brackets. For example, File > Create > Folder.

For Device

Convention Description

< > Button or key names for devices. For example, press <OK>.

[] Window names, menu items, data table, and field names are inside square brackets. For example,

pop up the [New User] window.

/ Multi-level menus are separated by forwarding slashes. For example, [File/Create/Folder].

Symbols

Convention Description

This implies about the notice or pays attention to, in the manual.

The general information which helps in performing the operations faster.

The information which is significant.

 Care taken to avoid danger or mistakes.

The statement or event that warns of something or that serves as a cautionary example.

FacePro Windows SDK V5.8 SDK Development Guide

P a g e | 5 Copyright©2023 Armatura LLC. All rights reserved.

Table of Contents

1 OVERVIEW ... 6

1.1 ABOUT ARMATURA FACEPRO 5.8 ALGORITHM.. 6

1.2 FEATURES ... 7

2 TECHNICAL SPECIFICATIONS ... 8

 .. SDK 9

3 INSTALLATION .. 9

3.1 DEPLOY SDK FILE .. 9

3.2 PROJECT CONFIGURATION .. 9

4 PROGRAMMING GUIDE ... 10

4.1.1 REGISTRATION PROCEDURE ... 10

4.1.2 1:N IDENTIFICATION PROCESS .. 12

4.1.3 MASK DETECTION .. 14

5 SDK INTERFACE DESCRIPTION .. 17

5.1 VISIBLE LIGHT FACE TEMPLATE FORMAT... 17

5.2 VISIBLE LIGHT FACE API DESCRIPTION ... 17

5.2.1 .DLL ... 17

6 APPENDIX .. 42

6.1 APPENDIX 1: ERROR CODE ... 42

6.2 APPENDIX 2: GLOSSARY ... 44

6.3 APPENDIX 3: LICENSE APPLICATION AND ACTIVATION .. 45

6.4 APPENDIX 4: BACK UP REGISTRATION IMAGE ... 45

6.5 APPENDIX 5: JSON FORMAT DESCRIPTION ... 46

FacePro Windows SDK V5.8 SDK Development Guide

P a g e | 6 Copyright©2023 Armatura LLC. All rights reserved.

1 Overview

Utilizing the advanced facial recognition algorithms, Armtura FacePro SDK empowers

developers to easily integrate biometric-based applications with ease. Our comprehensive SDK

guide provides developers with all the necessary information to build and integrate face

recognition seamlessly. With its user-friendly development kit and detailed function

specifications, Armatura FacePro 5.8 SDK is the perfect choice for any biometric integration

project which requires the facial recognition-based identification and authentication features. It

ensures to make your development process easier and more efficient with Armatura FacePro

SDK..

1.1 About Armatura FacePro 5.8 Algorithm

Armatura FacePro 5.8 algorithm is a cutting-edge, visible light-based facial recognition solution

that utilizes advanced deep-learning techniques to accurately detect key facial features and

landmarks, such as eyes, lips, nose tips, and contour elements. This powerful algorithm supports

a wide range of features, including face detection, liveness detection, mask detection, age

estimation, gender identification, and facial matching.

Designed to provide strong adaptability to complex application environments, the Armatura

FacePro 5.8 algorithm is able to withstand challenges such as hair accessories occlusion, image

blurring, and varying lighting conditions. Additionally, the algorithm is user-friendly for software

developers and integrators, allowing for easy customization to meet specific business and

customer requirements.

Armatura FacePro SDK is built on deep-learning trained face models, which may vary between

different SDK versions and platforms. As a result, the face template created for identification and

verification may not be consistent across different versions and platforms, meaning that the face

template is not transferable between SDK versions and platforms. This ensures that the highest

level of security and accuracy is maintained for all users.

FacePro Windows SDK V5.8 SDK Development Guide

P a g e | 7 Copyright©2023 Armatura LLC. All rights reserved.

1.2 Features

1:N Identification

Armatura FacePro algorithm utilizes stable facial features and employs a multi-level

identification method for optimal classifier parameterization, providing a robust means of multi-

factor identification for large user populations..

Analysis of face attributes

Armatura FacePro algorithm utilizes advanced computer vision techniques and deep-learning

technology, trained on vast amounts of data, to provide comprehensive facial attribute analysis.

This includes the detection of gender, age, facial expression, and mask usage for the target

individual..

Face posture

Armatura FacePro algorithm exhibits robust posture adaptability, with the ability to accurately

identify individuals despite variations in head tilt, rotation, and yaw. This is achieved through

advanced image processing techniques such as affine transformation and feature-based

alignment, which enable the system to normalize and compensate for changes in facial posture.

The FacePro algorithm has the capability to accurately identify individuals within a range of yaw

angles up to 30 degrees and pitch angles up to 25 degrees, providing comprehensive coverage

for a wide range of practical applications.

Face expression

Armatura FacePro algorithm has been specifically designed to support accurate facial

recognition, even under unusual or unnatural facial expressions. Examples of such expressions

include laughing (with teeth or mouth visible), raised eyebrows, closed eyes, and frowning

eyebrows. Despite these challenging conditions, the algorithm is able to deliver high-precision

results.

High performance

Utilizing the deep-learning algorithm, Armatura FacePro algorithm is able to perform face

detection and identification from single frame image at millisecond level. It makes possible to

process the real-time face recognition on video streams captured from video surveillance

devices or smart devices with digital cameras.

Multiple person tracking

FacePro Windows SDK V5.8 SDK Development Guide

P a g e | 8 Copyright©2023 Armatura LLC. All rights reserved.

Trained by deep-learning model with cutting-edge multiple face tracking technology, Armatura

FacePro allows for simultaneous identification and analysis of multiple individuals on a single

frame image captured from video stream. This powerful tool can accurately detect and track

multiple faces in real-time, meanwhile it also provides valuable analytic information of facial

attributes and expressions.

2 Technical Specifications

Development Language

The FacePro SDK is built on standard Win32 API and supports C, C++, and C# language

programming.

Platform Requirements

The FacePro SDK is compatible with 32-bit and 64-bit versions of Windows XP SP3 or higher

operating system.

Technical Specification

Parameter Description

Template size 2048 bytes

Face Posture adaptability Yaw ≤ 30, Pitch ≤ 30, Roll ≤ 30

1:N Capacity 50,000

Face detection < 50 ms

Face feature extraction < 350 ms

Face Identification (1:50,000) < 100 ms

Accuracy FAR = 0.03% when FRR = 1.86%

Note:

The performance metrics for the algorithm are derived from a proprietary face image dataset

with a resolution of 640x640, running a computer system equipped with 8GB of memory and a

quad-core Inter(R) Core(TM) i5-3210M CPU @2.5GHz processor.

FacePro Windows SDK V5.8 SDK Development Guide

P a g e | 9 Copyright©2023 Armatura LLC. All rights reserved.

3 SDK Installation

3.1 Deploy SDK File

1) Copy the following files (DLL directory) to the Windows terminal.

Model Name Library File Name

Algorithm model file sdk_x86_face_attr_fp_v1.0.1.bin

sdk_x86_face_hvdet_fp_large_v1.0.3.bin

sdk_x86_feature_Lumia_fp_v1.0.1.bin

sdk_x86_liveness_fp_v1.0.1.bin

Algorithm core library libbaselayer.dll

libmidlayer.dll

libsdkface.dll

libsdksearch.dll

Third-party tool library pthreadVC2.dll

turbojpeg.dll

Algorithm core library sdklayer1.dll

Dynamic link library of

visible light face API

liveface.dll

3.2 Project Configuration

You can copy the FacePro SDK DLL files directly to your development and deployment

environment without extra installation steps.

Before deploying FacePro SDK package, please make sure that your operating system, computer

configuration, or Windows mobile terminal device meets the system requirement。

Next copy the following FacePro SDK DLL files: libbaselayer.dll, libmidlayer.dll, libsdkface.dll,

libsdksearch.dll, meglayer1.dll, pthreadVC2.dll, turbojpeg.dll, sdklayer1.dll, liveface.dll to the

specified directory to build your application.

FacePro Windows SDK V5.8 SDK Development Guide

P a g e | 10 Copyright©2023 Armatura LLC. All rights reserved.

4 Programming Guide

The following guide will explain the face recognition operation workflow and provide the

development reference to developers to understand the registration/identification/mask

detection workflow and procedure implemented by the FacePro 5.8 algorithm.

4.1.1 Registration Procedure

When registering an individual face, the SDK can directly take the extracted face template as a

registration template. For more information on this process and its specific implementation,

please refer to the API specification provided in this document.

Registration Process Flow

FacePro Windows SDK V5.8 SDK Development Guide

P a g e | 11 Copyright©2023 Armatura LLC. All rights reserved.

Process Description

2) The program starts to capture the face images.

3) DetectFaces is called to detect the face after the face image is captured successfully.

4) PredictLiveness is called to perform liveness detection after the face is detected

successfully.

5) ExtractFeature is called to extract the face features and create template upon

positive liveliness detection.

6) Search is called to perform 1:N matching the candidate template to these in the

FacePro Windows SDK V5.8 SDK Development Guide

P a g e | 12 Copyright©2023 Armatura LLC. All rights reserved.

database and check if the same face has been enrolled or not. This step is called

deduplication as well.

7) If there is successful match found in the database, the face has been registered and

the application can take proper action to handle duplicated case.

8) If no match found in the database, InsertFaceToGroup is called to add the

candidate face template to the in-memory library (or high-speed cache) for runtime

matching operation and the same face template is saved into to the database for

persistence.

9) The registration process is completed and stops.

4.1.2 1:N Identification Process

In order to perform 1:N identification, it is required that all enrolled templates shall be loaded

from the database to the in-memory library (high-speed cache) before performing 1:N

identification. In memory matching process avoids the disk I/O latency and is speedy. The

algorithm library is initiated and InsertFaceToGroup is called to add all the enrolled templates to

the in-memory library.

Identification Process Flow

FacePro Windows SDK V5.8 SDK Development Guide

P a g e | 13 Copyright©2023 Armatura LLC. All rights reserved.

Process Description

1) The program starts to capture the face images.

2) DetectFaces is called to detect the face after the image is captured successfully.

3) PredictLiveness is called to perform liveliness detection after the face is

successfully detected on the image.

FacePro Windows SDK V5.8 SDK Development Guide

P a g e | 14 Copyright©2023 Armatura LLC. All rights reserved.

4) ExtractFeature is called to extract the face features and create candiate template

upon positive liveliness detection.

5) Search is called to perform 1:N identification and returns the matching result after

the candidate template is successfully created.

6) 1:N identification process is completed and stops here.

4.1.3 Mask Detection

Facial mask detection can be performed directly after the face is detected on the target image.

For more information on this process and its specific implementation, please refer to the API

description provided.

Mask Detection Process Flow

FacePro Windows SDK V5.8 SDK Development Guide

P a g e | 15 Copyright©2023 Armatura LLC. All rights reserved.

Process Description

1) The program starts to capture the face images.

2) DetectFaces is called to detect faces after the image is captured successfully.

3) PredictLiveness is called to perform liveliness detection after the face is

FacePro Windows SDK V5.8 SDK Development Guide

P a g e | 16 Copyright©2023 Armatura LLC. All rights reserved.

successfully detected on the image.

4) PredictAttribute is called to perform mask detection upon positive liveness

detection.

5) Face mask detection operation is completed and stops here.

FacePro Windows SDK V5.8 SDK Development Guide

P a g e | 17 Copyright©2023 Armatura LLC. All rights reserved.

5 SDK Interface Description

5.1 Visible Light Face Template Format

Template Type Data Length Description

Face template 2048 bytes Templates are used as registration templates and identification
templates.

5.2 Visible Light Face API Description

5.2.1 LiveFace.dll

Function List

Interface Description

Version Gets the SDK version number

Init Initializes algorithm resources

Terminate Releases algorithm resources

FreeMemory Releases the memory

CreateDetectHandle Creates the face detection instance handle.

DetectFaces Detects the face.

DestroyDetectHandle Releases the face detection instance handle

CreateFeatureHandle Creates an instance handle for extracting the face template

ExtractFeature Extracts the face template

DestroyFeatureHandle Releases the face template instance handle

CreateLivenessHandle Creates an instance handle for alive (liveliness) face detection

PredictLiveness Detects the alive faces (liveliness of the face)

DestroyLivenessHandle Releases the instance handle of alive (liveliness) face detection

CreateAttributeHandle Creates the instance handle for face attribute detection

PredictAttribute Detects the face attributes

DestroyAttributeHandle Releases the instance handle of face attribute

detection

CreateCompareHandle Creates the instance handle for 1:1 face verification

Compare Performs the 1:1 verification process

DestroyCompareHandle Releases the 1:1 face instance handle

CreateSearchHandle Creates a 1:N high-speed cache

CreateGroup Creates a group in 1:N high-speed cache

InsertFaceToGroup Adds face templates to a group specified by the 1:N high-speed

cache

DeleteFaceFromGroup Deletes the face template in the group specified by the 1:N high-

speed cache

Search Performs 1:N recognition in the specified group ID of 1:N high-

FacePro Windows SDK V5.8 SDK Development Guide

P a g e | 18 Copyright©2023 Armatura LLC. All rights reserved.

speed cache

DestroyGroup Deletes the specified group in 1:N high-speed cache

DestroySearchHandle Releases 1:N high-speed cache resources

AnalyzeDetectResult Analyzes the face information structure

AnalyzeFeatureResult Analyzes the face template structure

AnalyzeLivenessResult Analyzes the face liveness feature structure

AnalyzeFaceAttributeResult Analyzes the face attribute structure

ConverBioFeatureToStandFeature Converts the original template of the algorithm into integrated

template

ConverStandFeatureToBioFeature Converts the integrated template into algorithm original template

Data Structure Description

Function Syntax

 typedef struct _FaceDetectConfig{

 int face_min;

 float pose_roll_upper_threshold;

 float pose_yaw_upper_threshold;

 float pose_pitch_upper_threshold;

 float blurriness_upper_threshold;

 int brightness_low_threshold;

 int brightness_upper_threshold;

 int brightness_deviation_threshold;

 float face_completeness_threshold;

 int reserved[23];

 } TFaceDetectConfig,*PFaceDetectConfig;

 typedef struct _AttributeResult // Click here to view its description

 {

 int magic;

 int gender;

 int age;

 int maskStatus;

 }TAttributeResult,*PAttributeResult;

 typedef struct _FeatureResult // Click here to view its description

 {

 char* featureData;

 int featureLength;

 }TFeatureResult,*PFeatureResult;

 typedef struct _LivenessResult // Click here to view its description

 {

 float livenessScore;

FacePro Windows SDK V5.8 SDK Development Guide

P a g e | 19 Copyright©2023 Armatura LLC. All rights reserved.

 int reserved[8];

 }TLivenessResult,*PLivenessResult;

 typedef struct _FaceLandmark // Click here to view its description

 {

 char* landmark_data;

 int landmark_length;

 } TFaceLandmark,*PFaceLandmark;

 typedef struct _FaceRect // Click here to view its description

 {

 int left;

 int top;

 int right;

 int bottom;

 } TFaceRect,*PFaceRect;

 typedef struct _FacePose // Click here to view its description

 {

 float roll;

 float pitch;

 float yaw;

 } TFacePose,*PFacePose;

 typedef struct _DetectFaceInfo // Click here to view its description

 {

 FaceRect rect;

 FaceRect extent_rect;

 FacePose pose;

 float blur;

 TFaceLandmark face_landmark;

 int brightness;

 int brightness_deviation;

 int reserved[24];

 } TDetectFaceInfo, *PDetectFaceInfo;

 typedef struct _DetectFaceResult // Click here to view its description

 {

 int magic;

 PDetectFaceInfo face_info;

 int face_count;

 int reserved[24];

 } TDetectFaceResult, *PDetectFaceResult;

 typedef struct _IdentifyResult // Click here to view its description

 {

FacePro Windows SDK V5.8 SDK Development Guide

P a g e | 20 Copyright©2023 Armatura LLC. All rights reserved.

 float scores;

 unsigned int face_id;

 } TIdentifyFaceResult, *PIdentifyFaceResult;

FaceDetectConfig
Face detection configuration parameters
Parameters

Parameter Description

face_min

The minimum pixel to capture a face (that is, it ignores longer distance
faces.)

• The range is 0 - maximum resolution.

• The recommended value is 50.

pose_roll_upper_threshold

Roll threshold sets the angle constraint of the nose-center rotation for
the captured face (that is, it ignores the larger angle of the faces during
identification process).

• The range is 0-180 degrees.

• The recommended value is 30.

pose_yaw_upper_threshold

It is to set the angle constraint of the left and right deflection angles
for the captured face (that is, it ignores the larger angle of the faces).

• The range is 0-180 degrees.

• The recommended value is 30.

pose_pitch_upper_threshold

It is to set the angle constraint of the up and down pitch angles for the
captured face (that is, it ignores the larger angle of the faces).

• The range is 0-180 degrees.

• The recommended value is 30.

blurriness_upper_threshold

It is to set the constraint of the blur degree for the captured face.

• The range is (0-1).

• The recommended value is 0.7.

brightness_low_threshold

It is to set the lower limit for the face brightness.

• The range is (0-255).

• The recommended value is 70; 0 for no limit.

brightness_upper_threshold

It is to set the Upper limit for face brightness.

• The range is (0-255).

• The recommended value is 210; 0 for no limit.

brightness_deviation_threshold

It is to set the threshold of the standard deviation for the face
brightness, such as a face with sunglasses.
If the standard deviation for the brightness is larger, then the face
quality may be poor.

• The range is (0-255).

• The recommended value is 60; 0 for no limit.

face_completeness_threshold

Showing face integrity data for collected image.

• The range is (0-1).

• The recommended value is 0.9; when it is set to 0.0.

• The SDK uses the internal default value 0.9.

reserved Reserved

TFaceDetectConfig Structure of configuration parameter for Face detection

FacePro Windows SDK V5.8 SDK Development Guide

P a g e | 21 Copyright©2023 Armatura LLC. All rights reserved.

PFaceDetectConfig Pointer of face detection configuring parameter structure

AttributeResult

Parameters

Parameter Description

gender

0 Unknown

1 Male

2 Female

age Age

maskStatus

0 Unknown

1 Without mask

2 With mask

TAttributeResult Face attribute structure

PAttributeResult Face attribute structure pointer

FeatureResult

Parameters

Parameter Description

featureData Face template

featureLength Face template length

TFeatureResult Face template feature structure

PFeatureResult Face template feature structure pointer

LivenessResult
Alive face detection result
Parameters

Parameter Description

livenessScore Liveliness face value (0-1)

reserved[8] Reserved parameters

TLivenessResult Alive face detection result structure

PLivenessResult Alive face detection result structure pointer

FaceLandmark
Parameters

Parameter Description

landmark_data Face landmark data

landmark_length Face landmark data length

TFaceLandmark Face landmark structure

FacePro Windows SDK V5.8 SDK Development Guide

P a g e | 22 Copyright©2023 Armatura LLC. All rights reserved.

PFaceLandmark Face landmark structure pointer

FaceRect
Face rectangle coordinates (upper left corner coordinates and right corner coordinates).
Parameters

Parameter Description

left X axis of the upper left coordinate of the face rectangle

top Y axis of the upper left coordinate of the face rectangle

right X axis of the lower right coordinate of the face rectangle

bottom Y axis of the lower right coordinate of the face rectangle

TFaceRect Face rectangle coordinate structure

PFaceRect Face rectangle coordinate structure pointer

FacePose
Parameters

Parameter Description

roll The tilt angle for the captured face image (rotation around the Z-axis): ±90

pitch Moving the head up and down (rotation around the X-axis): ±90

yaw The angle of moving the head left and right (rotation around the Y-axis): ±90

TFacePose Face pose structure

PFacePose Face pose structure pointer

DetectFaceInfo
Parameters

Parameter Description

rect The coordinates of detected face frame

extent_rect Expanding the coordinates to include the entire face, which can be used to crop
the image with the whole detected face.

pose Face angle attributes

blur

The blur degree attribute of the face (0-1)

0 for the clearest

1 for the blurriest

face_landmark Face coordinate information

brightness Face brightness

brightness_deviation Standard deviation of face brightness

reserved[24] Reserved

TDetectFaceInfo Face information structure

PDetectFaceInfo Face information structure pointer

DetectFaceResult
Parameters

FacePro Windows SDK V5.8 SDK Development Guide

P a g e | 23 Copyright©2023 Armatura LLC. All rights reserved.

Parameter Description

face_info List of captured face information

face_count The total number of faces detected

reserved[24] Reserved

TDetectFaceResult Face data structure

PDetectFaceResult Face data structure pointer

IdentifyResult
Parameters

Parameter Description

scores The scores matched by the face in the low-level library (high-speed cache)

face_id Face id matched by the face in the low-level library (high-speed cache)

TIdentifyFaceResult 1:N recognition result structure

PIdentifyFaceResult 1:N recognition result structure pointer

Version

Function Syntax

int __stdcall Version

 (

 char* version,

 int* size

);

Description

Gets the SDK version number.

Parameter

Parameter Description

version
Out: Returns the version number (it is recommended to pre-allocate 128

bytes)

size
In: Memory size (bytes) allocated for the version

Out: Returns the actual version length

Returns

Returns the Error Code. See the Appendix 1 for error code details.

Example

char szVer[128] = {0};

int len = 128;

ret = Version(szVer,&len);

FacePro Windows SDK V5.8 SDK Development Guide

P a g e | 24 Copyright©2023 Armatura LLC. All rights reserved.

Remarks

• Click here to view the Function List.

Init

Function Syntax

int __stdcall Init();

Description

Initializes the algorithm resources.

Returns

Returns the Error Code. See the Appendix 1 for error code details.

Remarks

• Call Init before calling other APIs, and other APIs can be used normally after calling

this API successfully.

• In the entire program cycle, Init only needs to be initialized once.

• Click here to view the Function List.

Terminate

Function Syntax

int __stdcall Terminate();

Description

Releases the algorithm resources

Returns

Returns the Error Code. See the Appendix 1 for error code details.

Remarks

• Call this API at the end of the program.

• Click here to view the Function List.

FreeMemory

Function Syntax

int __stdcall FreeMemory(void *pResult);

Description

FacePro Windows SDK V5.8 SDK Development Guide

P a g e | 25 Copyright©2023 Armatura LLC. All rights reserved.

Releases the memory.

Parameter

Parameter Description

pResult In: Pointer to release the memory.

Returns

Returns the Error Code. See the Appendix 1 for error code details.

Remarks

• Click here to view the Function List.

CreateDetectHandle

Function Syntax

int __stdcall CreateDetectHandle(void **detectHandle);

Description

Creates the face detection instance handle.

Parameter

Parameter Description

detectHandle Out: Face detection instance handle

Returns

Returns the Error Code. See the Appendix 1 for error code details.

Remarks

• You can create multiple face detection handles.

• Click here to view the Function List.

DetectFaces

Function Syntax

int __stdcall DetectFaces

 (

 void* detectHandle,

 TFaceDetectConfig detectConfig,

 unsigned char* rawImage,

 int width,

 int height,

FacePro Windows SDK V5.8 SDK Development Guide

P a g e | 26 Copyright©2023 Armatura LLC. All rights reserved.

 int* detectedFaces,

 PDetectFaceResult *detectResult

);

Description

Detects the face.

Parameter

Parameter Description

detectHandle In: Face detection instance handle

detectConfig In: Face detection configuration parameters (see Structure Description)

rawImage In: BGR image bit depth of the original image data in 24 bits

width In: Image width

height In: Image height

detectedFaces Out: Number of detected faces

detectResult
Out: Detected face data (used to get face attributes, detect alive faces,

and extract face templates). It needs to be released by calling

FreeMemory after use.

Returns

Returns the Error Code. See the Appendix 1 for error code details.

Remarks

• After DetectResult is used, it needs to be released by calling the FreeMemory API.

• For related structures, see Structure Description.

• Click here to view the Function List.

DestroyDetectHandle

Function Syntax

int __stdcall DestroyDetectHandle(void *detectHandle);

Description

Releases face detection instance handle.

Parameter

Parameter Description

detectHandle In: Face detection instance handle

Returns

FacePro Windows SDK V5.8 SDK Development Guide

P a g e | 27 Copyright©2023 Armatura LLC. All rights reserved.

Returns the Error Code. See the Appendix 1 for error code details.

Remarks

• If the face detection instance handle is no longer needed to be used, it is

necessary to call this API to release the handle.

• Click here to view the Function List.

CreateFeatureHandle

Function Syntax

int __stdcall CreateFeaturetHandle(void **featureHandle);

Description

Creates instance handle for extracting face template.

Parameter

Parameter Description

featureHandle In: Face template instance handle

Returns

Returns the Error Code. See the Appendix 1 for error code details.

Remarks

• It is possible to create multiple handles for extracting face templates.

• Click here to view the Function List.

ExtractFeature

Function Syntax

int __stdcall ExtractFeature

 (

 void* featureHandle,

 PDetectFaceResult detectResult,

 unsigned char* rawImage,

 int width,

 int height,

 PFeatureResult *featureResults

);

Description

Extracts the face template.

Parameter

Parameter Description

FacePro Windows SDK V5.8 SDK Development Guide

P a g e | 28 Copyright©2023 Armatura LLC. All rights reserved.

featureHandle In: Face template instance handle

detectResult In: Face data instance handle (see DetectFaces API description)

rawImage In: BGR image bit depth is the original image data in 24 bits

width In: Image width

height In: Image height

featureResults
Out: The extracted face template data needs to be released by calling

FreeMemory after use.

Returns

Returns the Error Code. See the Appendix 1 for error code details.

Remarks

• After using featureResults, it is necessary to call FreeMemory API to release it.

• This API needs to be called after DetectFaces is successfully called.

• For related structures, see Structure Description

• Click here to view the Function List.

DestroyFeatureHandle

Function Syntax

int __stdcall DestroyFeatureHandle(void *featureHandle);

Description

Releases the face template instance handle.

Parameter

Parameter Description

featureHandle In: Face template instance handle

Returns

Returns the Error Code. See the Appendix 1 for error code details.

Remarks

• If you no longer need to use the face template instance handle, you need to call

this API to release it

• Click here to view the Function List.

CreateLivenessHandle

Function Syntax

int __stdcall CreateLivenessHandle(void **livenessHandle);

Description

Creates an instance handle of alive face (i.e., liveliness) detection.

FacePro Windows SDK V5.8 SDK Development Guide

P a g e | 29 Copyright©2023 Armatura LLC. All rights reserved.

Parameter

Parameter Description

livenessHandle Out: Instance handle of alive face detection

Returns

Returns the Error Code. See the Appendix 1 for error code details.

Remarks

• You can create multiple instance handles of alive face detection

• Click here to view the Function List.

PredictLiveness

Function Syntax

int __stdcall PredictLiveness

 (

 void* livenessHandle,

 PDetectFaceResult detectResult,

 unsigned char* rawImage,

 int width,

 int height,

 PLivenessResult *livenessResults

);

Description

Detects alive faces.

Parameter

Parameter Description

livenessHandle In: Instance handle of alive face detection

detectResult In: Face data instance handle (see DetectFaces API description)

rawImage
In: BGR image bit depth, which refers to the original image data in 24

bits

width In: Image width

height In: Image height

livenessResults
Out: The detected alive face data should be released after calling

FreeMemory function

Returns

Returns the Error Code. See the Appendix 1 for error code details.

Remarks

• After using livenessResults, you need to call the FreeMemory API to release it.

FacePro Windows SDK V5.8 SDK Development Guide

P a g e | 30 Copyright©2023 Armatura LLC. All rights reserved.

• This API needs to be called after DetectFaces is successfully called.

• For related structures, see Structure Description

• Click here to view the Function List.

DestroyLivenessHandle

Function Syntax

int __stdcall DestroyLivenessHandle(void *livenessHandle);

Description

Releases the instance handle of alive face detection.

Parameter

Parameter Description

livenessHandle Out: Instance handle of alive face detection

Returns

Returns the Error Code. See the Appendix 1 for error code details.

Remarks

• If you no longer need to use the instance handle of alive face detection, you need

to call this API to release it.

• Click here to view the Function List.

CreateAttributeHandle

Function Syntax

int __stdcall CreateAttributeHandle(void **attributeHandle);

Description

Creates the instance handle for face attribute detection.

Parameter

Parameter Description

attributeHandle Out: Instance handle of face attribute detection

Returns

Returns the Error Code. See the Appendix 1 for error code details.

Remarks

• You can create multiple instance handles of live face detection.

• Click here to view the Function List.

FacePro Windows SDK V5.8 SDK Development Guide

P a g e | 31 Copyright©2023 Armatura LLC. All rights reserved.

PredictAttribute

Function Syntax

int __stdcall PredictAttribute

 (

 void* attributeHandle,

 PDetectFaceResult detectResult,

 unsigned char* rawImage,

 int width,

 int height,

 PAttributeResult *attributeResults

);

Description

Detects the face attributes.

Parameter

Parameter Description

attributeHandle In: Instance handle of face attribute detection

detectResult In: Face data instance handle (see DetectFaces API description)

rawImage In: BGR image bit depth is the original image data in 24 bits

width In: Image width

height In: Image height

attributeResults
Out: The detected face attribute data needs to be released after calling

FreeMemory.

Returns

Returns the Error Code. See the Appendix 1 for error code details.

Remarks

• After using attributeResults, you need to call the FreeMemory API to release it.

• This API needs to be called after DetectFaces is successfully called.

• For related structures, see Structure Description.

• Click here to view the Function List.

DestroyAttributeHandle

Function Syntax

FacePro Windows SDK V5.8 SDK Development Guide

P a g e | 32 Copyright©2023 Armatura LLC. All rights reserved.

int __stdcall DestroyAttributeHandle(void *attributeHandle);

Description

Releases the instance handle of the face attribute detection.

Parameter

Parameter Description

attributeHandle Out: Instance handle of face attribute detection

Returns

Returns the Error Code. See the Appendix 1 for error code details.

Remarks

• For the instance handle of face attribute detection that is no longer needed, it is

required to call this API to release it.

• Click here to view the Function List.

CreateCompareHandle

Function Syntax

int __stdcall CreateCompareHandle(void **compareHandle);

Description

Creates the instance handle of face 1: 1 verification.

Parameter

Parameter Description

compareHandle Out: Instance handle of face 1: 1 verification

Returns

Returns the Error Code. See the Appendix 1 for error code details.

Remarks

• You can create multiple 1: 1 face instance handles.

• Click here to view the Function List.

Compare

Function Syntax

int __stdcall Compare

 (

 void* compareHandle,

 const char *firstFeature,

 int cbFirstFeature,

FacePro Windows SDK V5.8 SDK Development Guide

P a g e | 33 Copyright©2023 Armatura LLC. All rights reserved.

 const char *secondFeature,

 int cbSecondFeature,

 float *score

);

Description

Performs the 1:1 face verification.

Parameter

Parameter Description

compareHandle In: Instance handle of face 1: 1 verification

firstFeature In: Face template data 1

cbFirstFeature In: Length of the face template 1

secondFeature In: Face template data 2

cbSecondFeature In: Length of the face template 2

score
Out: Returns the score (The range is 0-100. The higher the score, the

greater the similarity)

Returns

Returns the Error Code. See the Appendix 1 for error code details.

Remarks

• Identification score range: 0-100. (Recommended threshold: 65)

• In actual functions, the threshold can be adjusted as required.

• Click here to view the Function List.

DestroyCompareHandle

Function Syntax

int __stdcall DestroyCompareHandle(void *compareHandle);

Description

Releases the 1:1 face instance handle.

Parameter

Parameter Description

compareHandle In: Instance handle of face 1: 1 verification

Returns

Returns the Error Code. See the Appendix 1 for error code details.

Remarks

• If you no longer require using the 1: 1 face instance handle, you need to call this

API to release it.

• Click here to view the Function List.

FacePro Windows SDK V5.8 SDK Development Guide

P a g e | 34 Copyright©2023 Armatura LLC. All rights reserved.

CreateSearchHandle

Function Syntax

int __stdcall CreateSearchHandle(void** searchHandle);

Description

Creates a 1:N high-speed cache (multiple high-speed caches can be created).

Parameter

Parameter Description

searchHandle In: Instance pointer to 1:N high-speed cache

Returns

Returns the Error Code. See the Appendix 1 for error code details.

Remarks

• Click here to view the Function List.

CreateGroup

Function Syntax

int __stdcall CreateGroup

 (

 void* searchHandle,

 unsigned int groupid

);

Description

Creates a group in 1:N high-speed cache.

Parameter

Parameter Description

searchHandle In: Instance pointer to 1:N high-speed cache

groupid In: Group ID

Returns

Returns the Error Code. See the Appendix 1 for error code details.

Remarks

• Click here to view the Function List.

InsertFaceToGroup

FacePro Windows SDK V5.8 SDK Development Guide

P a g e | 35 Copyright©2023 Armatura LLC. All rights reserved.

Function Syntax

int __stdcall InsertFaceToGroup

 (

 void* searchHandle,

 unsigned int groupid,

 unsigned int faceID,

 const unsigned char * feature,

 int featureLen

);

Description

Adds the face templates to a group specified by the 1:N high-speed cache.

Parameter

Parameter Description

searchHandle In: Instance pointer to 1:N high-speed cache

groupid In: Group ID

faceID In: Face ID

feature In: Face template data

featureLen In: Face template data length

Returns

Returns the Error Code. See the Appendix 1 for error code details.

Remarks

• This API is not a thread safe API.

• Click here to view the Function List.

DeleteFaceFromGroup

Function Syntax

int __stdcall DeleteFaceFromGroup

 (

 void* searchHandle,

 unsigned int groupid,

 unsigned int faceID

);

Description

Deletes the face template in the group specified by the 1:N high-speed cache.

Parameter

Parameter Description

FacePro Windows SDK V5.8 SDK Development Guide

P a g e | 36 Copyright©2023 Armatura LLC. All rights reserved.

searchHandle In: Instance pointer to 1:N high-speed cache

groupid In: Group ID

faceID In: Face ID

Returns

Returns the Error Code. See the Appendix 1 for error code details.

Remarks

• This API is not a thread safe API.

• Click here to view the Function List.

Search

Function Syntax

 int __stdcall Search

 (

 void* searchHandle,

 unsigned int groupid,

 const char * feature,

 int featureLen,

 PIdentifyFaceResult identifyFaceResult,

 int *maxRetCount

);

Description

Performs 1:N recognition in the specified group ID of 1:N high-speed cache.

Parameter

Parameter Description

searchHandle In: Instance pointer to 1:N high-speed cache

groupid In: Group ID

feature In: Face template data for identification

featureLen In: Face template data length

identifyFaceResult Out: Returns identification result

maxRetCount
In: Maximum number of identification results returned

Out: How many identification results actually returned

Returns

Returns the Error Code. See the Appendix 1 for error code details.

Remarks

• Identification score range: 0-100. (Recommended threshold: 74)

• This API is not a thread safe API.

FacePro Windows SDK V5.8 SDK Development Guide

P a g e | 37 Copyright©2023 Armatura LLC. All rights reserved.

• In actual applications, the threshold can be adjusted as required.

• For related structures, see Structure Description

• Click here to view the Function List.

DestroyGroup

Function Syntax

int __stdcall DestroyGroup

 (

 void* searchHandle,

 unsigned int groupid

);

Description

Deletes the specified group in 1:N high-speed cache.

Parameter

Parameter Description

searchHandle In: Instance pointer to 1:N high-speed cache

groupid In: Group ID

Returns

Returns the Error Code. See the Appendix 1 for error code details.

Remarks

• Click here to view the Function List.

DestroySearchHandle

Function Syntax

int __stdcall DestroySearchHandle(void* searchHandle);

Description

Releases 1:N high-speed cache resources.

Parameter

Parameter Description

searchHandle In: Instance pointer to 1:N high-speed cache

Returns

Returns the Error Code. See the Appendix 1 for error code details.

Remarks

FacePro Windows SDK V5.8 SDK Development Guide

P a g e | 38 Copyright©2023 Armatura LLC. All rights reserved.

• If you no longer require using the face 1: 1 instance handle, you need to call this

API to release it

• Click here to view the Function List.

AnalyzeDetectResult

Function Syntax

int __stdcall AnalyzeDetectResult(void* detectResultHandle,unsigned char

*faceInfo,unsigned int *cbFaceInfo);

Description

Analyzes the face information structure.

Parameter

Parameter Description

detectResultHandle
In: Instance pointer of the face information structure (see DetectFaces

interface)

faceInfo
In: Face information (returned data in json format), see Appendix 5 for

specific json format

cbFaceInfo
In/Out: The length of the face information

in: Pre-allocated memory size of faceInfo

Returns

Returns the Error Code. See the Appendix 1 for error code details.

Remarks

• Click here to view the Function List.

AnalyzeFeatureResult

Function Syntax

int __stdcall AnalyzeFeatureResult(void* featureResult,unsigned int faceIndex,int

featureType,unsigned char *featureInfo,unsigned int *cbFeatureInfo);

Description

Analyzes the face template structure.

Parameter

Parameter Description

featureResult In: Face template structure pointer (see ExtractFeature interface)

faceIndex In: Face index (see DetectFaces. The value range is 0 to detectedFaces-1)

featureType In: Face template type; 0 indicates the original template, 1indicates the

FacePro Windows SDK V5.8 SDK Development Guide

P a g e | 39 Copyright©2023 Armatura LLC. All rights reserved.

integrated template (The parameter is generally passed to 0)

featureInfo
Out: Face template information (json format data), see Appendix 5 for

specific json format

cbFeatureInfo
In/Out: The length of the face template information

In: Pre-allocated memory size of the face template information

Out: Actual length of the returned face template information

Returns

Returns the Error Code. See the Appendix 1 for error code details.

Remarks

• After calling the ExtractFeature interface, call this interface.

• Click here to view the Function List.

AnalyzeLivenessResult

Function Syntax

int __stdcall AnalyzeLivenessResult(void* livenessResult,unsigned int faceIndex,float

*livenessScore,int *reserved);

Description

Analyzes the face liveness feature structure.

Parameter

Parameter Description

livenessResult
In: The pointer to the liveness feature structure of the face (see the

PredictLiveness interface)

faceIndex In: Face index (see DetectFaces. The value range is 0 to detectedFaces-1)

livenessScore Out: The liveness detection value corresponding to the face index

reserved In: Reserved parameters

Returns

Returns the Error Code. See the Appendix 1 for error code details.

Remarks

• After calling the PredictLiveness interface, call this interface.

• Click here to view the Function List.

AnalyzeFaceAttributeResult

Function Syntax

int __stdcall AnalyzeFaceAttributeResult(void* attributeResult,unsigned int

FacePro Windows SDK V5.8 SDK Development Guide

P a g e | 40 Copyright©2023 Armatura LLC. All rights reserved.

faceIndex,unsigned char *attributeInfo,unsigned int *cbAttributeInfo);

Description

Analyzes the face attribute structure.

Parameter

Parameter Description

attributeResult In: Face attribute structure pointer (see PredictAttribute interface)

faceIndex In: Face index (see DetectFaces. The value range is 0 to detectedFaces-1)

attributeInfo
Out: Face attribute information (json format data), see Appendix 5 for

specific json format

cbAttributeInfo
In/Out: The length of the face attribute information

In: The pre-allocated memory size of the face attribute information

Out: The actual length of the face attribute information

Returns

Returns the Error Code. See the Appendix 1 for error code details.

Remarks

• After calling the PredictAttribute interface, call this interface.

• Click here to view the Function List.

ConverBioFeatureToStandFeature

Function Syntax

int __stdcall ConverBioFeatureToStandFeature(unsigned char *pStandFeature, int

*pStandFeatureLen,unsigned char *pBioFeature, int bioFeatureLen);

Description

Converts the original template of the algorithm into integrated template.

Parameter

Parameter Description

pStandFeature Out: Integrated template data

pStandFeatureLen
In: Memory size allocated by the integrated template data

Out: The length of the integrated template data

pBioFeature
In: Algorithm original template (see ExtractFeature or

AnalyzeFeatureResult interface)

bioFeatureLen In/Out: The original template length of the algorithm

Returns

Returns the Error Code. See the Appendix 1 for error code details.

Remarks

FacePro Windows SDK V5.8 SDK Development Guide

P a g e | 41 Copyright©2023 Armatura LLC. All rights reserved.

• Click here to view the Function List.

ConverStandFeatureToBioFeature

Function Syntax

int __stdcall ConverStandFeatureToBioFeature(unsigned char *pStandFeature,unsigned

char *pBioFeature, int *bioFeatureLen);

Description

Converts the integrated template to algorithm original template.

Parameter

Parameter Description

pStandFeature In: Integrated template data

pBioFeature Out: Algorithm original template data

bioFeatureLen
In: The pre-allocated memory size of the algorithm original template

data (pBioFeature)

Out: The length of the algorithm original template data

Returns

Returns the Error Code. See the Appendix 1 for error code details.

Remarks

• Click here to view the Function List.

FacePro Windows SDK V5.8 SDK Development Guide

P a g e | 42 Copyright©2023 Armatura LLC. All rights reserved.

6 Appendix

6.1 Appendix 1: Error Code

Error Code Description

0 Call succeeded

1 Call failed

2 Runs out of chip trial period

3 Chip verification failed

4 Parameter error
5 Model path is empty

6 Memory allocation exception, such as malloc failure.
10 Cache DB is full
11 Please try again

40 Unsupported API
41 Obsolete API
50 Model file error
51 Unsupported model type

52 Unsupported model version

53 Lack of necessary model
54 Model handle error
55 Too many models loaded

1101 The algorithm does not detect the face

1102 An unknown error occurred in the algorithm

1103 Low image quality

1104 Error in extracting face feature data

1105 Unqualified face in the image

2000 Uninitialized algorithm

2001 No face detected

2002 Insufficient memory allocated

3101 Internal error
3102 Unknown error
3103 Null pointer
3104 Unsupported configuration

3105 Unsupported model
3106 File is damaged

3107 Out of parameter range

3108 Invalid setting

3109 File not found

3110 Invalid parameter
3111 Invalid type

3112 Unsupported operation

3113 Invalid license

3114 Invalid setting

FacePro Windows SDK V5.8 SDK Development Guide

P a g e | 43 Copyright©2023 Armatura LLC. All rights reserved.

3115 Unknown global option error
3116 Unauthorized

3117 Duplicate face ID

3118 Invalid face ID

3119 Face ID not found

3120 Error handle

FacePro Windows SDK V5.8 SDK Development Guide

P a g e | 44 Copyright©2023 Armatura LLC. All rights reserved.

6.2 Appendix 2: Glossary

This glossary will help you understand the basic functions of visible light facial recognition

applications and quickly complete the integrated development of visible light facial recognition

applications.

Identification/Verification template

Used for 1:1 verification or 1:N identification recognition, that is, the face template obtained by

calling ExtractFeature API.

Registration template

To be added to the low-level library (high-speed cache), that is, the face template obtained by

calling ExtractFeature API.

Face registration

The process of collecting face images of users via the face module/collector device. The

collected images are then processed to extract a face template. As a result, the template

transfer to the background system in database, which can be used for later identification.

(1:1) Face verification

1:1 face verification, also known as face verification, is a process of confirming the identity of a

user by comparing their user ID and face template. This process is used to determine

whether a given set of verification templates are extracted from the same face as the registered

template.

(1:N) Face identification

1:N face identification, also called face recognition, is a process of determining whether a user

exists in the system based on the face of the user, without the user ID. Specifically, the

application looks up the database of registered face templates based on the input face template

and returns the name of the user meeting the threshold, face similarity degree, and other

related information.

FacePro Windows SDK V5.8 SDK Development Guide

P a g e | 45 Copyright©2023 Armatura LLC. All rights reserved.

6.3 Appendix 3: License Application and Activation

License Application

In the SDK development kit, there is a license folder.

Open the CMD console and navigate to the current license folder path, and then run the

following command;

CMD> hasp_update_expire_xp32.exe f fingerprint.c2v

If the execution is successful a fingerprint.c2v file will be generated under the current path.

Send this file to technical support to apply for a license file.

License Activation

After receiving fingerprint.v2c license file, put it in the license folder path of the SDK

development kit.

Open the CMD console and navigate to the current license folder path, and then run the

following command;

CMD> hasp_update_expire_xp32.exe u fingerprint.v2c

The console prints: HelloWorld LIuK.

It means activation is successful, otherwise the activation is failed.

6.4 Appendix 4: Back up Registration Image

Back up Registration Image

It is recommended that users must save the registration images when registering faces, and it

may be required to re-extract features when the algorithm model is upgraded.

FacePro Windows SDK V5.8 SDK Development Guide

P a g e | 46 Copyright©2023 Armatura LLC. All rights reserved.

6.5 Appendix 5: Json Format Description

Face template information Json format:

{

"featureinfo":

 {

 "major": 58, // Template major version number

 "minor": 10, // Template minor version number

 featuredatabase64:"ADF...", // Face template Base64 format data

 featuredatabase64len:2752 // The length of the face template Base64 format

data

 }

}

Face information Json format:

{

 "facecount": 5,// Number of faces

 // Face information array

 "faceinfo":

 [

 {

 "left": 1, // The X coordinate of the upper left corner of the face

rectangle

 "top": 2, // The Y coordinate of the upper left corner of the face

rectangle

 "right": 1, // The X coordinate of the lower right corner of the face

rectangle

 "bottom": 2, // The Y coordinate of the lower right corner of the face

rectangle

 "extentleft": 0, // Reserved parameters

 "extenttop": 0, // Reserved parameters

 "extentright": 0, // Reserved parameters

 "extentbottom":0, // Reserved parameters

 "roll": 2.0, //Roll angle of the face

 "pitch": 2.0, //Pitch angle of the face

 "yaw": 1.0,//Yaw angle of the face

 "blur": 2.4, // Face blur degree (value range: 0~1.0, 0 means the

clearest, 1 means the most blurry)

 "brightness": 3, // Face brightness

FacePro Windows SDK V5.8 SDK Development Guide

P a g e | 47 Copyright©2023 Armatura LLC. All rights reserved.

 "brightnessdeviation": 4 // Standard deviation of face brightness

 "face_completeness":0.90 // Face completeness, range (0~1), the higher the

score, the better the face completeness

 },

 {

 "left": 1,

 "top": 2,

 "right": 1,

 "bottom": 2,

 "extentleft": 1,

 "extenttop": 2,

 "extentright": 1,

 "extentbottom": 2,

 "roll": 2.0,

 "pitch": 2.0,

 "yaw": 1.0,

 "blur": 2.4,

 "brightness": 3,

 "brightnessdeviation": 4,

 "face_completeness":0.90

 }

]

}

Face attribute Json format:

{

"faceattributeinfo":

 {

 "gender": 1,// 0: means unknown, 1: means male, 2: means female

 "age": 10,// Age

 "maskstatus":0// 0: means unknown, 1: means not wearing a mask, 2: means

wearing a mask

 }

}

190 Bluegrass Valley Pkwy,

Alpharetta, Georgia 30005. USA

E-mail: info@armatura.us

www.armatura.us

Copyright © 2023 Armatur LLC. All Rights Reserved.

mailto:info@armatura.us
http://www./

