

API Development Manual:

AMTFacePro SDK for Android

API Version: 5.62

Doc Version: 1.0

October 2022

Thank you for choosing our product. Please read the instructions

carefully before operation. Follow these instructions to ensure that the

product is functioning properly. The images shown in this manual are

for illustrative purposes only.

For further details, please visit our Company’s website

www.armatura.us.

http://www.armatura.us/

AMTFacePro SDK For Android API Development Manual

P a g e | 2

Copyright © 2022 ARMATURA LLC. All rights reserved.

Without the prior written consent of ARMATURA LLC. no portion of this manual can be copied or forwarded

in any way or form. All parts of this manual belong to ARMATURA and its subsidiaries (hereinafter the

"Company" or "ARMATURA").

Trademark

 is a registered trademark of ARMATURA LLC. Other trademarks involved in this manual

are owned by their respective owners.

Disclaimer

This manual contains information on the operation and maintenance of the ARMATURA product. The

copyright in all the documents, drawings, etc. in relation to the ARMATURA supplied product vests in and is

the property of ARMATURA. The contents hereof should not be used or shared by the receiver with any third

party without express written permission of ARMATURA.

The contents of this manual must be read as a whole before starting the operation and maintenance of the

supplied product. If any of the content(s) of the manual seems unclear or incomplete, please contact

ARMATURA before starting the operation and maintenance of the said product.

It is an essential pre-requisite for the satisfactory operation and maintenance that the operating and

maintenance personnel are fully familiar with the design and that the said personnel have received thorough

training in operating and maintaining the machine/unit/product. It is further essential for the safe operation

of the machine/unit/product that personnel have read, understood, and followed the safety instructions

contained in the manual.

In case of any conflict between terms and conditions of this manual and the contract specifications, drawings,

instruction sheets or any other contract-related documents, the contract conditions/documents shall prevail.

The contract specific conditions/documents shall apply in priority.

ARMATURA offers no warranty, guarantee, or representation regarding the completeness of any information

contained in this manual or any of the amendments made thereto. ARMATURA does not extend the warranty

of any kind, including, without limitation, any warranty of design, merchantability, or fitness for a particular

purpose.

AMTFacePro SDK For Android API Development Manual

P a g e | 3

ARMATURA does not assume responsibility for any errors or omissions in the information or documents which

are referenced by or linked to this manual. The entire risk as to the results and performance obtained from

using the information is assumed by the user.

ARMATURA in no event shall be liable to the user or any third party for any incidental, consequential, indirect,

special, or exemplary damages, including, without limitation, loss of business, loss of profits, business

interruption, loss of business information or any pecuniary loss, arising out of, in connection with, or relating

to the use of the information contained in or referenced by this manual, even if ARMATURA has been advised

of the possibility of such damages.

This manual and the information contained therein may include technical, other inaccuracies, or typographical

errors. ARMATURA periodically changes the information herein which will be incorporated into new

additions/amendments to the manual. ARMATURA reserves the right to add, delete, amend, or modify the

information contained in the manual from time to time in the form of circulars, letters, notes, etc. for better

operation and safety of the machine/unit/product. The said additions or amendments are meant for

improvement /better operations of the machine/unit/product and such amendments shall not give any right

to claim any compensation or damages under any circumstances.

ARMATURA shall in no way be responsible (i) in case the machine/unit/product malfunctions due to any non-

compliance of the instructions contained in this manual (ii) in case of operation of the machine/unit/product

beyond the rate limits (iii) in case of operation of the machine and product in conditions different from the

prescribed conditions of the manual.

The product will be updated from time to time without prior notice. The latest operation procedures and

relevant documents are available on http://www.armatura.com.

If there is any issue related to the product, please contact us.

ARMATURA Headquarters

Address 190 Bluegrass Valley Pkwy,

 Alpharetta, GA 30005, USA.

For business-related queries, please write to us at: info@armatura.us.

To know more about our global branches, visit www.armatura.us.

http://www.zkteco.com/
http://www.zkteco.com/

AMTFacePro SDK For Android API Development Manual

P a g e | 4

About the Company

ARMATURA is a leading global developer and supplier of biometric solutions which incorporate the latest

advancements in biometric hardware design, algorithm research & software development. ARMATURA holds

numerous patents in the field of biometric recognition technologies. Its products are primarily used in business

applications which require highly secure, accurate and fast user identification.

ARMATURA biometric hardware and software are incorporated into the product designs of some of the

world’s leading suppliers of workforce management (WFM) terminals, Point-of-Sale (PoS) terminals, intercoms,

electronic safes, metal key lockers, dangerous machinery, and many other products which heavily rely on

correctly verifying & authenticating user’s identity.

About the Manual

This manual introduces the operations of AMTFacePro SDK For Android.

All figures displayed are for illustration purposes only. Figures in this manual may not be exactly consistent

with the actual products.

AMTFacePro SDK For Android API Development Manual

P a g e | 5

Document Conventions

Conventions used in this manual are listed below:

GUI Conventions

For Software

Convention Description

Bold font Used to identify software interface names e.g. OK, Confirm, Cancel.

>
Multi-level menus are separated by these brackets. For example, File > Create >

Folder.

For Device

Convention Description

< > Button or key names for devices. For example, press <OK>.

[]
Window names, menu items, data table, and field names are inside square

brackets. For example, pop up the [New User] window.

/
Multi-level menus are separated by forwarding slashes. For example,

[File/Create/Folder].

Symbols

Convention Description

This represents a note that needs to pay more attention to.

The general information which helps in performing the operations faster.

 The information which is significant.

 Care taken to avoid danger or mistakes.

The statement or event that warns of something or that serves as a cautionary

example.

AMTFacePro SDK For Android API Development Manual

P a g e | 6

Table of Contents

1 AMTFACEPRO ALGORITHM DESCRIPTION ... 7

1.1 AMTFACEPRO SDK TECHNICAL DESCRIPTION .. 7

1.2 AMTFACEPRO SDK MAIN FUNCTION ... 9

2 AMTFACEPRO SDK ARCHITECTURE AND INSTALLATION ... 10

2.1 AMTFACEPRO SDK ARCHITECTURE .. 10

2.2 SOFTWARE INSTALLATION .. 10

2.3 LICENSE APPLICATION AND USAGE MATTERS ... 11

2.3.1 DEVICE HARDWARE INFORMATION BINDING .. 11

3 AMTFACEPRO SDK INTERFACE CLASS DETAILS ... 14

3.1 FUNCTION LIST ... 14

4 WORKFLOW DESCRIPTION .. 39

4.1 ALGORITHM AUTHORIZATION AND PROCESS .. 39

4.1.1 AUTHORIZATION PROCESS ... 39

4.1.2 RESTORE TO FACTORY SETTINGS / REBURN THE SYSTEM ... 39

4.2 ALGORITHM INITIALIZATION ... 40

4.2.1 INITIALIZATION INTERFACE DESCRIPTION ... 40

4.2.2 INITIALIZATION EXAMPLE PROGRAM DESCRIPTION .. 40

4.3 FACE DETECTION .. 40

4.4 EXTRACT TEMPLATE .. 41

4.5 REGISTER FACE.. 41

4.5.1 FACE REGISTRATION INTERFACE DESCRIPTION .. 41

4.5.2 FACE REGISTRATION EXAMPLE PROGRAM DESCRIPTION ... 42

4.6 FACE COMPARISON ..44

4.6.1 FACE COMPARISON PROGRAM DESCRIPTION.. 44

4.6.2 FACE COMPARISON EXAMPLE PROGRAM DESCRIPTION .. 45

4.7 LIVELINESS DETECTION ... 47

4.8 END OF THE PROGRAM .. 48

4.8.1 END PROCEDURE DESCRIPTION .. 48

4.8.2 END EXAMPLE PROGRAM DESCRIPTION .. 48

5 COMMON PROBLEMS ... 49

5.1 LICENSE AUTHORIZATION ... 49

6 APPENDIX .. 49

6.1 APPENDIX 1 – ERROR CODE ... 49

6.2 APPENDIX 2 – PARAMETER CODE .. 50

6.3 APPENDIX 3 – ICAO FEATURE DATA .. 51

6.4 APPENDIX 4 – THRESHOLD DESCRIPTION .. 53

AMTFacePro SDK For Android API Development Manual

P a g e | 7

1 AMTFacePro Algorithm Description

Facial recognition is a system that automatically recognizes a human face from an image or video. As one

of the earliest biometric technologies, facial recognition has many advantages over other biometric

technologies: innate, non-invasive, and easy to use. Facial recognition has become increasingly relevant

today due to the rapid growth of industrial technology (such as digital video cameras, mobile network

equipment) and growing security requirements, and widely used in various systems, including attendance,

security, video monitoring, and so on.

As a visible light source-based face recognition algorithm, AMTFacePro is a fast and accurate 1:1 and 1:N

algorithm. It is fully open to software developers and system integrators. It is possible to configure

different SDK versions according to markets and customer needs. Besides, different SDK versions support

consistent comparison and recognition of face templates in various platforms.

1.1 AMTFacePro SDK Technical Description

Image

• To obtain a high-quality face template and speed, set the detection distance according to the actual

application scenario.

• The minimum imaging resolution recommended for face registration combined with recognition is

640 x 480 pixels. The SDK supports resolutions that are smaller than the specified value, but this

will decrease the accuracy of face registration and recognition, which will affect the consistency of

the face template.

• Use multiple images during the registration process, which in this way the quality of the face

template improves and enhances the quality and reliability of face recognition.

Illumination

• Please consider the controllable and uncontrollable lighting conditions. Pay attention to the

following typical conditions:

The front direct light and the diffuse light have the same light distribution for each angle of the

face and the shadow of the entire face area.

Certain types of lighting can also cause reflections on glasses or face.

AMTFacePro SDK For Android API Development Manual

P a g e | 8

Facial posture

Facial recognition algorithms support multiple poses.

• ±30 degrees of head tilt, ±25 degrees are standard values, appropriate for most front-closing facial

images.

• ±30 degrees of pitch and front position deviation, ±25 degrees is a standard value. Increase the

allowable tolerance for the head to ±30 degrees if there are several low-angle images of the same

face in the face registration process.

• Shake your head and offset from the front position by ±30 degrees.

• A deviation of ±15 degrees is a standard value, and this deviation is sufficient for a face image that

is close to the front. Recommended registering multiple photos of the face in the database to

support a deviation angle of ±30 degrees from the front of the face.

Facial expression

The facial algorithm maximizes the accuracy of face recognition under certain unnatural facial expressions.

Examples of unusual expressions are as follows (allowed but not recommended):

• Laughing (exposed part of the tooth or mouth)

• Eyebrows rise

• Closed eyes

• Frowning eyebrows

Glasses, makeup, hair, beard, and mustache

To ensure the quality of face recognition, the algorithm SDK supports the status that part of the face

covered by glasses or hair:

• Glasses: Ordinary rimmed glasses cover a part of the face causing some facial features invisible,

reducing the quality of face recognition.

• Contact lens: Contact lenses do not affect face recognition. However, people wearing contact lenses

may also wear ordinary lens glasses.

• Heavy makeup may hide or distort facial features.

• Hairstyle: Some hairstyles may cover part of the face.

• Changes in facial hairstyle may require additional face registration, especially when the beard/

mustache grows out or shaved.

AMTFacePro SDK For Android API Development Manual

P a g e | 9

1.2 AMTFacePro SDK Main Function

Face Detection

The Face Algorithm SDK provides fast, high-accuracy face detection. It is generally applicable to pictures

and live video streams and can detect faces of not less than 36*36 pixels.

Face key point detection

Face Algorithm SDK face key point detection can accurately locate key areas of the face, including eyes,

sharp chin, facial contours, so on and supports a certain degree of face occlusion.

Face attribute analysis

Analyze the gender, age, and whether the target face is wearing a mask.

Live face detection

Provides a single-frame photo live detection interface and can also perform motion-coordinated live

detection based on face pose estimation.

Face recognition

1:1 Face Verification: Face algorithm SDK of face verification technology is used for application scenarios

such as login verification and identity recognition. Help users quickly decide whether two images match,

determine whether the target face is the face detected in the video, support authentication of real-time

recognition, and incorporates identity and face binding features.

1:N Face Identification: Face algorithm SDK of face identification technology can automatically identify

the face identity in photos and video streams, and its recognition speed and accuracy are among the

world's outstanding levels.

AMTFacePro SDK For Android API Development Manual

P a g e | 10

2 AMTFacePro SDK Architecture and Installation

2.1 AMTFacePro SDK Architecture

The AMTFacePro SDK Android version mainly exists in the form of a java interface. The user can develop

an application based on visible light face recognition using the Android application development language

(java).

Files Included

Operating System Files Description

Android All files under libs AMTFacePro Algorithm library

SDK Architecture

2.2 Software Installation

Before installing the AMTFacePro SDK, make sure your operating system or mobile device meets the

software operations requirements.

Package the AMTFacePro algorithm library into the application, and users may have different packaging

methods using various development tools. The following is an example to describe the use of AMTFacePro

SDK in the Android Studio IDE development environment.

• Copy the *.so and *.jar files to the libs directory of the Android project. The *.so library files get

Application Program

AMTFacePro Algorithm SDK

AMTFacePro SDK For Android API Development Manual

P a g e | 11

saved in different directories according to the CPU architecture.

2.3 License Application and Usage Matters

This SDK uses device hardware information or encryption chip binding. The two licensing methods have

explained separately below.

2.3.1 Device Hardware Information Binding

Due to the need for reading device hardware information and read and write permissions, please

configure at least the following permissions in the list:

 <uses-permission android:name="android.permission.CAMERA" />

AMTFacePro SDK For Android API Development Manual

P a g e | 12

 <uses-permission android:name="android.permission.INTERNET" />

 <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

 <uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE" />

 <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />

 <uses-permission android:name="android.permission.MANAGE_EXTERNAL_STORAGE" /> Please add this

permission for Android 10 and above

 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />

 <uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />

Please add the following code for Android 10 and above and grant full Sdcard access.

 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.R) {

 if (!Environment.isExternalStorageManager()) {

 startActivity(Intent(Settings.ACTION_MANAGE_ALL_FILES_ACCESS_PERMISSION))

 }

 }

License Application Process

FaceAuthNative

getDeviceFingerprint

AMTFacePro SDK For Android API Development Manual

P a g e | 13

Process Description

• Call getDeviceFingerprint to get device hardware information.

• Apply for a license with the obtained device hardware information.

• Obtain license file.

License Activation Process

setParameter (1011/1012)

init

NO

YES

Whether is authorized or not

isAuthorized

Process Description

• Call isAuthorized to determine whether the License Activation has an authorized state (can directly

call init to initialize when it has the authorized state).

• Call setParameter when not authorized to set the license file name or license data to SDK through

1011/1012 (Appendix 2 – Parameter Code) parameter.

• Call init to initialize the algorithm (algorithm initialization completes the final activation process)

License file

AMTFacePro SDK For Android API Development Manual

P a g e | 14

3 AMTFacePro SDK Interface Class Details

3.1 Function List

Function Name Description

version Gets the version number

getLastError Returns the latest error message

isAuthorized Checks whether the current device is authorized

getHardwareId Gets the machine code

getDeviceFingerprint Gets the device hardware information

setParameter Sets the parameters

getParameter Obtains the parameters

init Initializes algorithm library

terminate Releases the algorithm resources

detectFacesFromNV21 Detects the face in NV21 format

detectFacesFromBitmap Detects the face.

getFaceContext Gets the specified face instance pointer

getLiveness Gets the face liveliness score

getFacePose Gets the face pose (in 3 angles).

getFaceICaoFeature Gets the ICAO features

getFaceRect Gets a rectangle that detects faces

extractTemplate Extracts the facial template

closeFaceContext Releases the face instance objects

verify Process the 1:1 Face comparison

dbAdd Adds the face template to 1:N cache.

dbDel Adds the face template to the default 1:N buffer

dbClear Clears the default 1:N cache

dbCount Gets the default number of 1:N cache template.

dbIdentify
Gets the default 1:N high speed buffer to perform 1:N
recognition

AMTFacePro SDK For Android API Development Manual

P a g e | 15

version

Function Syntax

public static int version

 (

 byte[] version,

 int[] size

);

Description

This function gets the version number.

Parameters

Parameter Description

version
Out: Returns version number (it is recommended to pre allocate more

than 128 bytes).

size
In: version memory size (bytes).

Out: Actual version length returned.

Returns

Error Code Refer to - Appendix 1: Error Code

Example

 byte[] version = new byte[256];

 int[] size = new int[1];

 size[0] = 256;

 if (0 == AMTLiveFaceService.version(version, size))

 {

 String verStr = new String(version, 0, size[0]);

 }

Remarks

• Click here to view the Function List.

AMTFacePro SDK For Android API Development Manual

P a g e | 16

getLastError

Function Syntax

public static int getLastError

 (

 long context,

 byte[] lasterror,

 int[] size

);

Description

This function returns the latest error message.

Parameters

Parameter Description

context

In: An algorithm instance pointer (allowing NULL to be passed) is the last

error of the instance when it is not NULL (and the interface is called when

the error code is 11 to get the error description)

lasterror
Out: Error message (recommended pre-allocation of 256 bytes, enough

use)

size
In: version memory size (bytes)

Out: Actual last error length returned.

Returns

Error Code Refer to - Appendix 1: Error Code

• If the interface returns failure, the general error is that the allocated memory is insufficient.

Example

 byte[] lasterror = new byte[256];

 int[] size = new int[1];

 size[0] = 256;

 if (0 == AMTLiveFaceService.getHardwareId(context, lasterror, size))

 {

 String errStr = new String(lasterror, 0, size[0]);

AMTFacePro SDK For Android API Development Manual

P a g e | 17

 }

Remarks

• When the interface used does not need to pass a context algorithm instance pointer, the context

parameter can pass 0 when the interface is called, such as interface: init, etc. When these interfaces

call getLastError, context passes 0.

• Click here to view the Function List.

isAuthorized

Function Syntax

public static boolean isAuthorized();

Description

This function checks whether the current device is authorized.

Returns

true Authorized

false Unauthorized

Remarks

• Devices with legal encryption chips always returns true (authorized status).

• Click here to view the Function List.

getHardwareId

Function Syntax

public static int getHardwareId

 (

 byte[] hwid,

AMTFacePro SDK For Android API Development Manual

P a g e | 18

 int[] size

);

Description

This function gets the machine code.

Parameters

Parameter Description

hwid Out: Returns the machine code (recommended to allocate 256 bytes)

size
In: hwid Memory size (bytes)

Out: Actual hwid length returned.

Returns

Error Code Refer to - Appendix 1: Error Code

Example

 byte[] hwid = new byte[256];

 int[] size = new int[1];

 size[0] = 256;

 if (0 == AMTLiveFaceService.getHardwareId(hwid, size))

 {

 String hwidStr = new String(hwid, 0, size[0]);

 }

Remarks

• The machine code has nothing to do with the actual binding hardware information. It is only used

here to assist the user in associating the machine and the license file.

• Click here to view the Function List.

getDeviceFingerprint

Function Syntax

AMTFacePro SDK For Android API Development Manual

P a g e | 19

public static int getDeviceFingerprint

 (

 byte[] devFp,

 int[] size

);

Description

This function gets the device hardware information.

Parameters

Parameter Description

devFp
Out: Returns device hardware information (recommended pre-

allocation of 32*1024 bytes)

size
In: devFp Memory size (bytes)

Out: Actual devFp length returned.

Returns

Error Code Refer to - Appendix 1: Error Code

Example

 byte[] devFp = new byte[32*1024];

 int[] size = new int[1];

 size[0] = 32*1024;

 if (0 == AMTLiveFaceService.getDeviceFingerprint(devFp, size))

 {

 String devFpStr = new String(devFp, 0, size[0]);

 }

Remarks

• Save devFp as a file or other form and send it to the business to apply for license.

• Click here to view the Function List.

setParameter

AMTFacePro SDK For Android API Development Manual

P a g e | 20

Function Syntax

public static int setParameter

 (

 long context,

 int code,

 byte[] value,

 int size

);

Description

This function sets the parameters.

Parameters

Parameter Description

context In: Algorithm instance pointer

code In: Parameter code (see Appendix 2)

value In: Parameter value

size In: Data length (bytes)

Returns

Error Code Refer to - Appendix 1: Error Code

Remarks

• Set the maximum number of faces detected and the 1:1 comparison threshold.

• Here the parameter value is a pure numeric string. For example, the parameter value should be set

to: "68".

• Click here to view the Function List.

getParameter

Function Syntax

public static int getParameter

AMTFacePro SDK For Android API Development Manual

P a g e | 21

 (

 long context,

 int code,

 byte[] value,

 int[] size

);

Description

This function obtains the parameters.

Parameters

Parameter Description

context In: Algorithm instance pointer

code In: Parameter code (see Appendix 2)

value Out: Parameter value

size
In: Allocated data length of the value

Out: Returned actual parameter data length

Returns

Error Code Refer to - Appendix 1: Error Code

Remarks

• Get the 1:1 comparison threshold, and the parameter value is a pure numeric string. For example,

to get the 1:1 threshold, the return parameter value is "76".

• Click here to view the Function List.

init

Function Syntax

public static int init(long[] context);

Description

AMTFacePro SDK For Android API Development Manual

P a g e | 22

This function initializes algorithm library.

Parameters

Parameter Description

context Out: Returns algorithm instance pointer (context[0])

Returns

Error Code Refer to - Appendix 1: Error Code

Example

 long context[] = new long[1];

 int ret = AMTLiveFaceService.init(context);

 if (0 == ret)

 {

 System.out.print("Init succ, context=" + context[0]);

 }

 else

 {

 System.out.print("Init failed, error code=" + ret);

 }

Remarks

• After the initial interface gets invoked successfully, invoke the setParameter to set the parameters

related to face detection and recognition. The specific setting method and the related parameters

can be described by referring to the setParameter interface.

• Click here to view the Function List.

terminate

Function

public static int terminate (long context);

AMTFacePro SDK For Android API Development Manual

P a g e | 23

Description

This function releases the algorithm resources

Parameter

Parameter Description

context In: Algorithm instance pointer

Returns

Error code Refer to: Error Code

Remarks

• Click here to view the Function List.

detectFacesFromNV21

Function

public static int detectFacesFromNV21

 (

 long context,

 byte[] rawImage,

 int width,

 int height,

 int[] detectedFaces

);

Description

This function detects the face in NV21 format.

Parameter

Parameter Description

context In: Algorithm instance pointer

AMTFacePro SDK For Android API Development Manual

P a g e | 24

rawImage In: NV21 image data

width In: Image width

height In: Image height

detectedFaces

Out: The number of faces detected (is < = maximum number of faces

detected).

The default maximum face detection number is 1.

Returns

Error code Refer to: Error Code

Remarks

• Since the default output of video stream is in NV21 format, this interface is added for easy use.

• Click here to view the Function List.

AMTFacePro SDK For Android API Development Manual

P a g e | 25

detectFacesFromBitmap

Function

public static int detectFacesFromBitmap

 (

 long context,

 Bitmap bitmap,

 int[] detectedFaces

);

Description

This function detects the face.

Parameter

Parameter Description

context In: Algorithm instance pointer

bitmap In: image

detectedFaces

Out: The number of faces detected (is < = the maximum number of faces

detected.

The default maximum face detection number is 1.

Returns

Error code Refer to: Error Code

Remarks

• The second-generation ID card photos can be detected through Bitmap objects.

• Click here to view the Function List.

AMTFacePro SDK For Android API Development Manual

P a g e | 26

getFaceContext

Function

public static int getFaceContext

 (

 long context,

 int faceIdx,

 long[] faceContext

);

Description

This function gets the specified face instance pointer.

Parameter

Parameter Description

context In: Algorithm instance pointer.

faceIdx In: Face index(see detectFacesFromNV21, 0~[detectedFaces-1]).

faceContext Out: Returns face instance pointer.

Returns

Error code Refer to: Error Code

Remarks

• Click here to view the Function List.

AMTFacePro SDK For Android API Development Manual

P a g e | 27

getLiveness

Function

public static int getLiveness

 (

 long faceContext,

 int[] score

);

Description

This function gets the face liveliness score.

Parameter

Parameter Description

faceContext In: Face instance pointer.

score Out: Liveness detection fraction

Returns

Error code Refer to: Error Code

Remarks

• The recommended score of liveliness detection is 65; and < 65 is recognized as false face.

• Click here to view the Function List.

getFacePose

Function

public static int getFacePose

 (

 long faceContext,

 float[] yaw,

AMTFacePro SDK For Android API Development Manual

P a g e | 28

 float[] pitch,

 float[] roll

);

Description

This function gets the face pose (in 3 angles).

Parameter

Parameter Description

faceContext In: Face instance pointer.

yaw

Out: The rotation angle centered on the nose between [-90, + 90].

Where 0 means positive face, clockwise is positive, counterclockwise is negative,

the algorithm cannot detect the face when the angle is too large, usually need to

be controlled within 45°.

pitch

Out: Up and down pitch angle value, the value is between [-90, +90].

Where 0 means positive face, head up is positive, head down is negative, the

algorithm cannot detect the face when the angle is too large, usually need to be

controlled within 45°

roll

Out: Left and right roll angle value, between [-90, +90].

Where 0 means positive face, left turn is positive, right turn is negative, the

algorithm cannot detect the face when the angle is too large, usually need to be

controlled within 45°.

AMTFacePro SDK For Android API Development Manual

P a g e | 29

Returns

Error code Refer to: Error Code

Remarks

• Click here to view the Function List.

getFaceICaoFeature

Function

public static int getFaceICaoFeature

 (

 long faceContext,

 int featureID,

 int[] score

);

Description

This function gets the ICAO features.

Parameter

Parameter Description

faceContext In: Face instance pointer.

featureID In: Feature ID

score Out: Returns score

Returns

Error code Refer to: Error Code

Remarks

• For AMTFACE_ICaoFEATUREID, see Appendix 3

• Click here to view the Function List.

AMTFacePro SDK For Android API Development Manual

P a g e | 30

getFaceRect

Function

public static int getFaceRect

 (

 long faceContext,

 int[] points,

 int cntPx

);

Description

Gets a rectangle that detects faces.

Parameter

Parameter Description

faceContext In: Face instance pointer.

points
Out: Four coordinate points of rectangle box p0.x p0.y p1.x p1.y p2.x p2.y p3.x p3.y

Sequential arrangement (clockwise)

cntPx Out: points Array size(8)

Returns

Error code Refer to: Error Code

AMTFacePro SDK For Android API Development Manual

P a g e | 31

Example

Coordinate point example

Remarks

• Picture zoom and rotate, convert the coordinates according to the actual situation

• Click here to view the Function List.

extractTemplate

Function

public static int extractTemplate

 (

 long faceContext,

 byte[] template,

 int[] size,

 int[] resverd

);

Description

This function extracts the facial template.

AMTFacePro SDK For Android API Development Manual

P a g e | 32

Parameter

Parameter Description

faceContext In: Face instance pointer.

template Out: Face template (recommended to allocate at least 256 bytes)

size
In: Template Memory allocation size

Out: Returns actual template data length

resverd Out: This parameter is a reserved parameter

Returns

Error code Refer to: Error Code

Example

int ret = 0;

byte[] template = new byte[256];

int[] size = new int[1];

int[] resverd = new int[1];

size[0] = 256;

ret = AMTLiveFaceService.extractTemplate(faceContext, template, size, resverd);

Remarks

• Click here to view the Function List.

AMTFacePro SDK For Android API Development Manual

P a g e | 33

closeFaceContext

Function

public static int closeFaceContext(long faceContext);

Description

This function releases the face instance objects.

Parameter

Parameter Description

faceContext In: Face instance pointer.

Returns

Error code Refer to: Error Code

Remarks

• Click here to view the Function List.

verify

Function

public static int verify

 (

 long context,

 byte[] regTemplate,

 byte[] verTemplate,

 int[] score

);

Description

This function process the 1:1 Face comparison.

AMTFacePro SDK For Android API Development Manual

P a g e | 34

Parameter

Parameter Description

context In: Algorithm instance pointer.

regTemplate In: Registration template

verTemplate In: Verification template

score Out: Returns score

Returns

Error code Refer to: Error Code

Example

int ret = 0;

int[] score = new int[1];

ret = AMTLiveFaceService.verify(context, regTemplate, verTemplate, score);

Remarks

• The 1:1 comparison threshold is 65. And if exceeds the defined value, then the comparison is

successful.

• Comparison score range: 0~100, see Appendix 4 for details

• Click here to view the Function List.

dbAdd

Function

public static int dbAdd

 (

 long context,

 String faceID,

 byte[] regTemplate

);

Description

AMTFacePro SDK For Android API Development Manual

P a g e | 35

This function adds the face template to 1:N cache.

Parameter

Parameter Description

context In: Algorithm instance pointer.

faceID In: Face ID

regTemplate In: Registration template

Returns

Error code Refer to: Error Code

Remarks

• Non-thread safe interface (note the memory db read and write is in protection)

• Face capacity, 50,000 face ID is recommended

• Click here to view the Function List.

dbDel

Function

public static int dbDel

 (

 long context,

 String faceID

);

Description

This function adds the face template to the default 1:N buffer.

Parameter

Parameter Description

context In: Algorithm instance pointer.

faceID In: Face ID

AMTFacePro SDK For Android API Development Manual

P a g e | 36

Returns

Error code Refer to: Error Code

Remarks

• Non thread safe interface (note the memory db read and write is in protection)

• Click here to view the Function List.

dbClear

Function

public static int dbClear(long context);

Description

This function clears the default 1:N cache.

Parameter

Parameter Description

context In: Algorithm instance pointer.

Returns

Error code Refer to: Error Code

Remarks

• Non thread safe interface (note the memory db read and write is in protection)

• Click here to view the Function List.

AMTFacePro SDK For Android API Development Manual

P a g e | 37

dbCount

Function

public static int dbCount

 (

 long context,

 int[] count

);

Description

This function gets the default number of 1:N cache template.

Parameter

Parameter Description

context In: Algorithm instance pointer.

count Out: Number of templates returned

Returns

Error code Refer to: Error Code

Remarks

• Non thread safe interface (note the memory db read and write is in protection)

• Click here to view the Function List.

dbIdentify

Function

public static int dbIdentify

 (

 long context,

 byte[] verTemplate,

 byte[] faceID,

AMTFacePro SDK For Android API Development Manual

P a g e | 38

 int[] score,

 Int[] identifyScore,

 int[] maxRetCount,

 int minScore,

 int maxScore

);

Description

This function takes the default 1:N high speed buffer to perform 1:N recognition

Parameter

Parameter Description

context In: Algorithm instance pointer.

verTemplate In: Verification template

faceID Out: Returns the face ID

score Out: Returns comparison score

identifyScore Out: Returns liveness score

maxRetCount
In: Maximum number of returns

Out: Actual number of returns

minScore

In: Minimum matching score. The recognition will be successful only when the

similarity between the recognized face and a face template in the database meets

the minimum matching score value.

maxScore

In: The recognition success returns immediately only when the similarity between

the recognized face and a face template in the database reaches this maximum

score value.

Returns

Error code Refer to: Error Code

Example

int ret = 0;

int[] score = new int[1];

byte[] faceIDS = new byte[256];

int[] maxRetCount = new int[1];

maxRetCount[0] = 1; //only returns 1 face ID

ret = AMTLiveFaceService.dbIdentify(context, verTemplate, faceIDS, score, maxRetCount, 70, 100);

AMTFacePro SDK For Android API Development Manual

P a g e | 39

Remarks

• Non thread safe interface (note memory db read and write protection)

• Comparison score range: 0~100, see Appendix 4 for details.

• minScore and maxScore Parameter description: The algorithm compares all the templates loaded into

the memory database in a cycle. In the process of cycle comparison, when the similarity between the

recognized face and a face template in the memory database reaches the maxScore value, the

recognition is successful and exits the cycle comparison immediately. When the similarity between the

recognized face and a face template in the memory database meets the minScore value, the current

face ID number gets saved. This cyclic comparison will get continued until all the templates get

compared. And the face IDs set by Parameter maxRetCount are returned according to the similarity

from high to low.

• Click here to view the Function List.

4 Workflow Description

4.1 Algorithm Authorization and Process

4.1.1 Authorization Process

• For Authorization Process detail, refer to License Application and Usage Matters.

4.1.2 Restore to Factory Settings / Reburn the System

For devices authorized by device hardware information, remember to restore factory settings and make

sure not to select the "format SD card" option to avoid license loss. And if the license is lost, you need to

apply again.

Similarly, if the license file gets lost due to operations such as "Reburn" the system, it is also necessary to

reapply for authorization.

The device hardware information authorization needs to get obtained again when applying for re-

authorization.

AMTFacePro SDK For Android API Development Manual

P a g e | 40

4.2 Algorithm Initialization

4.2.1 Initialization Interface Description

Initialize the face recognition engine, if successful, returns zero. Call this function before calling any other

functions. For more details on the interface description, please refer to the interface description

corresponding to Init Function.

public static int init(long[] context);

4.2.2 Initialization Example Program Description

Example

 long context[] = new long[1];

 int ret = AMTLiveFaceService.init(context);

 if (0 == ret)

 {

 System.out.print("Init succ, context=" + context[0]);

 }

 else

 {

 System.out.print("isAuthorized=" + AMTLiveFaceService.isAuthorized());

 System.out.print("Init failed, error code=" + ret);

 }

4.3 Face Detection

Detects the number of faces through Bitmap/NV21 data and returns zero if successful. Then checks

whether detectedFaces[0] is greater than 1.

• Call the Face detection interface.

AMTFacePro SDK For Android API Development Manual

P a g e | 41

• For more details, refer to detectFacesFromNV21/detectFacesFromBitmap function description.

• Obtain the face instance

• For more details, refer to getFaceContext.

4.4 Extract Template

• Call Face Detection to detect the face and get the pointer of the face instance.

• Call extractTemplate to extract facial features.

4.5 Register Face

4.5.1 Face Registration Interface Description

After successfully detecting the number of faces, the instance pointer of a single face can be obtained,

and the face template can be extracted according to the face instance pointer. And after successful

extraction, the user can proceed to register.

//Get a single face instance pointer interface. For detailed interface description, please refer to the

corresponding interface description of getFaceContext.

public static int getFaceContext

 (

 long context,

 int faceIdx,

 long[] faceContext

);

//Extract the face template. For detailed interface description, please refer to the corresponding interface

description of extractTemplate.

public static int extractTemplate

 (

 long faceContext,

AMTFacePro SDK For Android API Development Manual

P a g e | 42

 byte[] template,

 int[] size,

 int[] resverd

);

If 1:N comparison process is required, the obtained face template needs to be registered in the cache. For

detailed interface description, please refer to the interface description corresponding function dbAdd.

public static int dbAdd

 (

 long context,

 String faceID,

 byte[] regTemplate

);

4.5.2 Face Registration Example Program Description

1. After detecting the number of faces, the face pointer of a single face is obtained, and the face template is

extracted.

Example

//Get a single face instance pointer (the instance face index is: 0), instanceContext is the instance pointer

to the successful initialization of algorithm.

//Range of face index: detectFaces, 0~detectedFaces-1

long[] faceContext = new long[1];

retCode = AMTLiveFaceService.getFaceContext(instanceContext, 0, faceContext);

if(0 == retCode)

{

//Extracts the face template (face index is: 0) and suggested to pre-allocate 256 bytes to store the face

template.

byte[] template = new byte[256];

AMTFacePro SDK For Android API Development Manual

P a g e | 43

size = new int[1];

size[0] = 256;

int[] resverd = new int[1];

// faceContext [0] is the pointer of the face instance obtained successfully at first, after which the face template

can get registered.

retCode = AMTLiveFaceService.extractTemplate(faceContext[0], template, size, resverd);

}

2. If 1:N comparison is required, the obtained face template is required to register in the 1:N cache memory.

Example

// instanceContext is the instance pointer after initialization of the algorithm. Template is the face

template to be added to the 1:N cache. "Reg1" is the user ID to register to the 1:N cache.

retCode = AMTLiveFaceService.dbAdd(instanceContext, "Reg1", template);

3. Backup registration photos

Customers are strongly advised to save the registration photos when they register their faces, and the

features need to be extracted again when the algorithm model gets upgraded.

AMTFacePro SDK For Android API Development Manual

P a g e | 44

4.6 Face Comparison

4.6.1 Face Comparison Program Description

1:1 Face verification

//For interface details, see the corresponding interface description in the function verify.

public static int verify

 (

 long context,

 byte[] regTemplate,

 byte[] verTemplate,

 int[] score

)

1:N Face identification

//For interface details, see the corresponding interface description in dbIdentify.

public static int dbIdentify

 (

 long context,

 byte[] verTemplate,

 byte[] faceIDs,

 int[] score,

 int[] maxRetCount,

 int minScore,

 int maxScore

)

AMTFacePro SDK For Android API Development Manual

P a g e | 45

4.6.2 Face Comparison Example Program Description

1:1 Face verification

int score = 0;

// instanceContext is the instance pointer after initialization of the algorithm. regTemplate, verTemplate are the

face templates to be compared.

int ret = 0;

//Stores the returned comparison score.

int[] score = new int[1];

ret = AMTLiveFaceService.verify(instanceContext, regTemplate, verTemplate, score);

1:N Face identification (returns single face ID)

int ret = 0;

int[] score = new int[1]; // Stores the returned comparison score.

byte[] faceIDS = new byte[256]; //Stores the returned face ID.

int[] maxRetCount = new int[1];

maxRetCount[0] = 1; //Only returns 1 face ID

// instanceContext is the instance pointer after initialization of the algorithm. verTemplate is the face template

to be compared.

ret = AMTLiveFaceService.dbIdentify(instanceContext, verTemplate, faceIDS, score, maxRetCount, 70, 100);

AMTFacePro SDK For Android API Development Manual

P a g e | 46

Remarks

minScore and maxScore Parameter Description:

• The algorithm compares all the templates loaded into the memory database in a cycle.

• In the process of cycle comparison, when the similarity between the recognized face and a face

template in the memory database reaches the maxScore value, the recognition is successful and

exits the cycle comparison immediately.

• When the similarity between the recognized face and a face template in the memory database

meets the minScore value, the current face ID number gets saved.

• This cyclic comparison will get continued until all the templates get compared.

• And the face IDs set by Parameter maxRetCount are returned according to the similarity from high

to low.

1:N face identification (returns multiple face IDs)

int ret = 0;

int[] maxRetCount = new int[1];

maxRetCount[0] = 6; //Returns 6 faces IDs

int[] score = new int[maxRetCount[0]]; //Store the corresponding score of the returned face ID.

byte[] faceIDS = new byte[4096];//Face ID multiple records are separated by \t.

// instanceContext is the instance pointer after initialization of the algorithm. verTemplate is the face template

to be compared.

ret = AMTLiveFaceService.dbIdentify(context, verTemplate, faceIDS, score, maxRetCount, 70, 100);

AMTFacePro SDK For Android API Development Manual

P a g e | 47

Remarks

minScore and maxScore Parameter Description:

• The algorithm compares all the templates loaded into the memory database in a cycle.

• In the process of cycle comparison, when the similarity between the recognized face and a face

template in the memory database reaches the maxScore value, the recognition is successful and

exits the cycle comparison immediately.

• When the similarity between the recognized face and a face template in the memory database

meets the minScore value, the current face ID number gets saved.

• This cyclic comparison will get continued until all the templates get compared.

• And the face IDs set by Parameter maxRetCount are returned according to the similarity from high

to low.

4.7 Liveliness Detection

After successfully detecting the number of faces, the instance pointer of a single face is obtained, and the

liveliness detection interface is invoked to judge whether the face is false or not.

Example

//Gets a single face instance pointer (the instance face index is: 0). The instanceContext is the instance pointer

after the algorithm is initialized successfully

//Range of the face index: detectFaces, 0~detectedFaces-1

long[] faceContext = new long[1];

retCode = AMTLiveFaceService.getFaceContext(instanceContext, 0, faceContext);

if(0 == retCode)

 {

 int[] score = new int[1];

 retCode = AMTLiveFaceService.getLiveness(faceContext[0], score);

 if (0 == retCode && score[0] < 65)

 {

 //A doubtful false face

AMTFacePro SDK For Android API Development Manual

P a g e | 48

 }

 }

4.8 End of the Program

4.8.1 End Procedure Description

//Releases face recognition engine. For interface details, please refer to the corresponding interface

description in terminate.

public static int terminate(long context);

Remarks

If you use an interface that corresponds to 1:N, call the interface dbClear to clear the 1:N cache before

calling the interface terminate.

4.8.2 End Example Program Description

//Clears the 1:N cache (with a 1: corresponding interface), where instanceContext is the instance pointer

after the algorithm initializes successfully

ret = AMTLiveFaceService.dbClear(instanceContext);

//Releases the resource, where instanceContext[0] is the instance pointer after the algorithm initialization.

ret = AMTLiveFaceService.terminate(instanceContext);

AMTFacePro SDK For Android API Development Manual

P a g e | 49

5 Common problems

5.1 License Authorization

Please get the hardware information and send it to the business to apply for a license file.

See [4.1] in detail.

6 Appendix

6.1 Appendix 1 – Error Code

As shown in the following table

Error Code Descriptions

-1 Unknown error

0 Success

1 Insufficient memory allocation

2 Parameter error

3 Failed to allocate memory

4 Invalid handle

5 Invalid Parameter code

6 Failed to get the eyes space

7 Invalid face index number

8 The comparison score is too low

9
The actual face template length is larger than the pre-allocated face

template length

10 Interface is not supported

11 Other errors

12 Invalid face ID

AMTFacePro SDK For Android API Development Manual

P a g e | 50

13 1:N identification failure, no corresponding face template was found.

14 Failed to load dynamic library

15 Image type Parameter error

16 Exceeds the maximum capacity of 1:N

17
The actual face thumbnail length is larger than that of the pre-allocated

face thumbnail length

Remarks

When returns error code 11, call GetLastError Interface to get the error messages.

6.2 Appendix 2 – Parameter Code

Descriptions are as follows:

Parameter code Type Descriptions

AMTLIVEFACE_PARAMETER_SET_MIN_EYE_DIST(1005) string

Sets the distance

between the eyes.

The default distance

is 60

AMTLIVEFACE_PARAMETER_SET_THRESHOLD_IFCAE_VERIFY(1009) string
Sets (get) 1:1

threshold

AMTLIVEFACE_PARAMETER_GLOBAL_LICENSE_FILENAME(1011) string
Sets the permission

file path

AMTLIVEFACE_PARAMETER_GLOBAL_LICENSE_DATA(1012)
unsigned

char*
Sets license file data

Remarks

Set (get) 1:1 verification threshold, set (get) Parameter value: pure numeric string.

AMTFacePro SDK For Android API Development Manual

P a g e | 51

6.3 Appendix 3 – ICAO Feature Data

Descriptions are as follows:

Feature code Descriptions

AMTFACE_ICAO_FEATURE_ID_AGE(0) Age assessment

AMTFACE_ICAO_FEATURE_ID_GENDER(1) Assessment of gender

AMTFACE_ICAO_FEATURE_QUALITY(2) Assess the quality of the face

AMTFACE_ICAO_FEATURE_ANGLE(3) Face angle

AMTFACE_ICAO_FEATURE_GLASSES(4） Assessment of glasses

AMTFACE_ICAO_FEATURE_MASK(5) Mask detection

AMTFACE_ICAO_FEATURE_HAIR(8) Assessment of hair

AMTFACE_ICAO_FEATURE_SKIN_COLOR(9) Assessment of skin color

AMTFACE_ICAO_FEATURE_EXP(13) Expression

Remarks

• When obtaining face quality, score is the returned quality score from 0~100.

• When obtaining gender, score returns.

1 Male

0 Female

• When getting glasses, score returns.

1 With Glasses

0 No Glasses

• When detecting masks, score returns.

0 Wearing a mask correctly

AMTFacePro SDK For Android API Development Manual

P a g e | 52

1 Failing to wear the mask correctly

2 Not wearing a mask

3 Unknown if wearing a mask

4 Invalid

Note: the accuracy of the mask type is for reference only)

• When getting hair, score returns.

0 Bald

1 Small amount of hair

2 Short hair

3 Long hair

4 Unknown

5 Invalid

• When getting skin color, score returns.

0 yellow skin

1 white skin

2 brown skin

3 black skin

4 unknown

5 invalid

• When getting an expression, score returns.

0 unknown

1 happy

2 serious

3 surprise

4 angry

5 sad

6 neutral

AMTFacePro SDK For Android API Development Manual

P a g e | 53

6.4 Appendix 4 – Threshold Description

• 1:1 recommended threshold value is 56

• Mainly used in scenes with fuzzy image quality, such as Identity card photos and other credentials.

• Recommended 1:N threshold value, and the actual application can adjust the threshold as needed.

Database Storage Capacity Reference Threshold

100,000 71

50,000 70

20,000 68

10,000 66

5,000 65

190 Bluegrass Valley Pkwy,

Alpharetta, GA 30005, USA

E-mail: info@armatura.us

www.armatura.us

Copyright © 2022 ARMATURA LLC. All Rights Reserved.

